Current Projects | Past Projects | Videos


Boomcopter: The Drone That Can Open Doors

Consumer drones can hover and take photos, but they can’t physically interact with their environment. The Boomcopter changes that. It’s a tri-rotor, with an extra arm and propeller that allows it to move laterally, while performing a task with its arm. It can open doors, flip switches, and attach sensors onto walls — all autonomously, using an array of sensors and cameras. In dangerous or inaccessible environments, the Boomcopter can perform tasks that would be too risky for humans.

Science of Safety – Portsmouth Robotics Demonstration

DOE decided to conduct a robotic demonstrations at Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, which is the site of our next major decommissioning effort. DOE had the full participation of United Steelworkers members, and the full support of Fluor-BWXT|Portsmouth, our decommissioning contractor. Two of DOE’s premier national labs – Savannah River and Sandia – provide technical leadership and coordination in addition to demonstrating some of their technologies. Two other world-class federal labs provided their technologies – NASA and JHU-APL, which is a university affiliated research center for the Department of Navy. Two non-profit organizations also, SwRI and OSRF demonstrated their technologies, and five universities provided their robotic technologies. Over a 4-day period, from August 22 through 25, they demonstrated 24 individual robotic technologies that were operated by about 30 USW/FBP workers. After the demos, 9 technologies were determined by the USW members to be near-ready for deployment with a few minor tweaks and a follow-up round of field demonstrations.  The Purdue and MSRAL robot demos begin at the 4:50 mark in the video.

Omnicopter v2.0 Micro Aerial Vehicle

Omnicopter v1.0 Micro Aerial Vehicle

Omnicopter Initial Test Flights

2D Microscale Caging Transport Primitive

500 um square path trajectory

3D Positioning and Stacking Microassembly Experiment

Assembly of 250 micron x 250 um footprint sized parts – 2D positioning followed by 3D stacking.

Vision-Based Micro-Force Sensor

Video from: A Two Dimensional Vision-Based Force Sensor for Microrobotic Applications.
D. Cappelleri, G. Piazza, V. Kumar. Sensors & Actuators: A. Physical. Vol. 171 Issue 2 pp. 340-351, 2011.

3D Microassembly: Micro-ring on Micro-Post

Assembly of a ring with a 500 um outer diameter and 125 um inner diameter onto a post with a diameter of 125 um. 

3D Microscale Caging Transport Primitive

Pick and place test, 600 um translation

Microbots: Medical Infantry | David Cappelleri | TEDxPurdueU TEDx Talks

The microevolution is among us! Dr. Cappelleri, Assistant Professor in Mechanical Engineering at Purdue University, discusses exciting cutting edge technology that has ground breaking applications in healthcare including potential cancer treatment! His research in micro-robots, which can barely be seen on the American dime, may be the new frontier in medical practice.

Microrobots Have Soft Touch

The possibilities seem to be endless for microrobots (robots smaller than a millimeter), from medicine to manufacturing. But there are also plenty of challenges. Dave Cappelleri and his team at Purdue have already tackled one of these challenges — how do you get something to move that is too small for a motor or a battery? Now they are tackling another: how can a microrobot use just the right amount of force to manipulate an individual cell? The answer lies in tracking them visually.

Localized Magnetic Field Control for Microrobots

Using localized magnetic fields and vision-based control to navigate single and multiple robots around virtual objects.

Hard Magnetic Body Microbot: Microassembly Test

Microassembly/Manipulation Test: HMB on Si wafer, submerged in mineral oil (wet)

Micro-Scale Tumbling Microbot (uTUM)

uTUM from ICRA2013

Soft Magnetic Body Microbot – Wet Environment Locomotion

Locomotion test on Si wafer, submerged in mineral oil

Soft Magnetic Body Microbot – Dry Environment Locomotion

Locomotion test on a (dry) silicon wafer substrate