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Abstract
In this paper we present an efficient and effective
method of using surrogate approximations to explore
the design space and capture the Pareto frontier during
multiobjective optimization.  The method employs
design of experiments and metamodeling techniques
(e.g., response surfaces and kriging models) to sample
the design space, construct global approximations of the
sample data, and quickly explore the design space to
obtain the Pareto frontier without specifying weights
for the objectives or using any optimization.  To
demonstrate the method, two mathematical example
problems are presented.  The results indicate that the
proposed method is effective at capturing convex and
concave Pareto frontiers even when discontinuities are
present.  After validating the method on the two
mathematical examples, a design application involving
the multiobjective optimization of a piezoelectric
bimorph grasper is presented.  The method facilitates
the multiobjective decision making process, enabling us
to find a compromise solution suitable for the given
design requirements.

1.  Introduction
Engineering design by its very nature is multiobjective,
often requiring tradeoffs between disparate and
conflicting objectives.  Designing the cross-section of a
cantilever beam is a classic example of the tradeoffs
embodied in design—minimizing the weight and
deflection of the beam requires a tradeoff between both
objectives since improving one worsens the other.  The
pervasiveness of these tradeoffs in engineering design
has given rise to a rich and vast array of methods and
approaches for multiobjective and multicriteria
optimization.  Examples include the weighted sum and
compromise programming approaches,1-3 genetic
algorithm-based approaches,4-8 Pareto point
approximation methods9-11, and some “brute force”
approaches such as Parameter Space Investigation.12, 13

Similarly, many researchers have studied the limitations
of weighted sum approaches to capture the Pareto set in
non-convex problems14-16.  Messac, et al.16 derive
quantitative conditions for determining whether or not a
Pareto point is capable of being captured with a given
objective function formulation.  Das and Dennis17 also
examine the drawbacks of using weighted sums to find
the Pareto set during multicriteria optimization, noting
that an evenly distributed set of weights fails to produce
an even distribution of points in the Pareto set.  Their
observations led to the development of the Normal-
Boundary Intersection (NBI) method to parameterize
the Pareto set and generate an evenly distributed set of
points in the Pareto set using an evenly distributed set
of parameters.18-20

Balling21 likens multiobjective optimization to
“shopping” in that the goal as designers should be to
produce a “rich set of good designs” from which the
consumer can pick the best design.  He advocates the
need for research in two areas: (1) efficient methods for
obtaining rich Pareto sets and (2) interactive graphical
computer tools to assist decision-makers in the
“shopping” process.  Balling and his colleagues have
developed an approach that combines genetic
algorithms to find Pareto optimal designs with an
interactive GUI that has slider bars to vary the
importance of the objectives to determine their impact
on the design solution.  Tappeta and Renaud22,23 are
also developing an interactive multiobjective
optimization procedure to explore design solutions
around a Pareto point using second-order Pareto surface
approximations derived from sensitivity information at
the Pareto point.  Implementation of their approach
using the Physical Programming methodology is
described in Ref. 24.
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In this paper, we seek to reduce the computational
expense of interactive approaches to multiobjective
optimization by focusing on efficient methods for
obtaining rich Pareto sets.  Consequently, we propose a
method that employs design of experiments (e.g.,
central composite designs, orthogonal arrays, and latin
hypercubes) and surrogate approximations (e.g.,
response surfaces and kriging models) to facilitate
exploring and capturing the Pareto frontier.  Our
method for efficient Pareto frontier exploration is
introduced in the next section.  This is followed in
Sections 3 and 4 with two example problems used to
illustrate the capability of the proposed Pareto frontier
exploration method to function effectively for convex
and non-convex multicriteria optimization problems
even when discontinuities are present.  Following these
test problems, Section 5 contains an application of
multiobjective optimization to design a piezoelectric
bimorph actuator for use in minimally invasive surgery.
Closing remarks are given in Section 6.

2.  Technology Base
In this work, we do not seek to approximate the Pareto
frontier directly as previous researchers have, nor do we
require that any weights for the objectives be specified
a priori for a weighted sum or compromise
programming approach.  Instead, we propose a method
to explore the entire design space rapidly by combining
design of experiments (e.g., central composite designs,
OAs, and latin hypercubes) and metamodeling
techniques (e.g., response surfaces and kriging models)
to construct inexpensive-to-run approximations of
computationally expensive engineering analyses and
simulations.25  These “surrogate” approximations are
then used in lieu of the computationally expensive
analyses to explore the multiobjective design space and
identify a rich set of potential points along the Pareto
frontier.  Candidate points can then be used to obtain
the actual (or near actual) Pareto frontier from the
original analysis codes after good designs are identified
for the multiple competing objectives.

2.1 The Pareto Frontier Exploration Method
Our proposed method for Pareto frontier exploration is
shown in Figure 1.  As seen in the figure, the proposed
approach employs design of experiments and surrogate
approximations to facilitate exploring and capturing the
Pareto frontier.  As shown in Figure 1, the first step is
to identify the design space.  This is typically a multi-
dimensional hypercube defined by the upper and lower
bounds of each design variable over some region of
interest.  Once the design space has been identified, an
experimental design is selected to sample the design
space.  A variety of different types of experimental
designs exist, including central composite designs,26

Latin hypercubes,27 and orthogonal arrays28 to name a

few.  After choosing an experimental design, the design
space is sampled to obtain data to construct surrogate
approximations of each objective and constraint.

Identify Design Space
(lower bound ≤ xi ≤ upper bound)

Select Experimental Design
(e.g., Central Composite Design,

OA, Latin Hypercube)

Sample Design Space
(obtain data to construct
surrogate approximation)

Construct Surrogate Models
(e.g., response surface, kriging) 

Explore Design Space
(using surrogate models)

Identify Pareto Frontier
(using Pareto fitness function)

Verify Pareto Frontier
(using actual analysis codes)
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Figure 1  Pareto Frontier Exploration Method

Once the sample data has been obtained, the next step is
to construct surrogate approximations.  In this paper,
we demonstrate the method using two types of
surrogate models: (1) second-order polynomial
response surfaces26 and (2) kriging models which
employ an underlying constant term and a Gaussian
correlation function (see Refs. 29-33 for a detailed
description of kriging and example applications).  A
variety of surrogate approximations exist, however, and
choosing the appropriate approximation is an open
research question receiving considerable attention.
Recent reviews of surrogate modeling applications in
mechanical and aerospace engineering are given in Ref.
34, structural optimization in Ref. 35, and
multidisciplinary design optimization in Ref. 36.

After the approximations have been constructed, they
must be validated to ensure sufficient accuracy.
Validation can be achieved through a variety of means,
including residual error analysis, R2 computation, and
cross-validation.  In the case of kriging models,
additional validation points are often required since a
kriging model interpolates the sample data.  The
additional validation data is then used to compute error
measures—where error is defined as the difference
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between the predicted and actual values—such as mean
absolute error (MAE), average absolute error (AAE),
and root mean squared error (RMSE) over the
additional validation data.  If the errors are too large,
additional sample points may be taken or the design
space may be reduced in an effort to improve the
accuracy of the approximation.  If the approximations
are not sufficiently accurate, then the Pareto frontier
obtained using the surrogate approximations will not be
a good approximation of the actual Pareto frontier.  In
the examples in Sections 3-4, a comparison of the
predicted and actual Pareto frontiers is used to validate
the approximations; additional validation data is used in
Section 5 to help validate the surrogate approximations.

Once the surrogate models have been validated, they
can be used to explore the design space using an
exhaustive grid search.  Since the approximations are
simple, they are extremely fast to execute; therefore, an
exhaustive grid search over the design space is
relatively inexpensive.  After the design space has been
explored over the search grid, the Pareto frontier can be
obtained using a Pareto fitness function such as that
proposed in Ref. 8:

p
jiji

ij
i 2f2f1f1fF ,...))],(min(max1[ −−−=

≠
(1)

where:
Fi = Pareto fitness value of ith design
f1i = first objective function value of the ith design
f2i = second objective function value of the ith design
p = pareto exponent (p = 1 in this study)

Using Eqn. 1, Pareto optimal designs have a fitness
function value greater than or equal to one; non-Pareto
designs have fitness values between 0 and 1.  This
occurs because the objectives f1, f2, etc. in Eqn. 1 are
scaled to range between zero and one using the
following equation:
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where:
f1i = scaled first objective value
rawf1i = raw (unscaled) value of first objective for

ith design
rawf1max = maximum raw (unscaled) value of first

objective over all designs
rawf1min = minimum raw (unscaled) value of first

objective over all designs

This scaling assumes that all objectives are to be
minimized; however, the scaling can be easily reversed
to maximize objectives if needed.

This “brute force” approach enables us to capture the
entire Pareto frontier all at once without having to
specify weights on the objectives or utilize any
optimization algorithm.  The predicted Pareto frontier
can then be explored graphically to determine suitable
design solutions that yield the best compromise
between the multiple objectives.  The corresponding
design variables can be stored along with the Pareto
points, enabling the actual Pareto frontier to be easily
constructed from the original analysis code by
substituting these design variables into the original
analyses rather than the surrogate approximation.

The proposed approach does not restrict the use of an
optimization algorithm to facilitate the search for the
Pareto frontier using the surrogate approximations;
however, we do wish to avoid having to specify weights
a priori for each objective.  We envision that a genetic
algorithm-based approach such as that proposed in
Refs. 4, 5, and 8 could greatly facilitate the design
space search, particularly in large dimensions; however,
we do not implement such an approach in this paper
since our problem sizes do not warrant it.

2.2  Surrogate Modeling Software
To facilitate construction and validation of the
surrogate approximations, a platform-independent Java-
based software application has been developed.  After
initialization (see Figure 2), the surrogate modeling
application queries the user for the design variables and
their ranges of interest and the output responses (see
Figure 3).  The user then selects an experimental
design, and a set of data points are generated and sent to
the analysis code or simulation (see Figure 4).  The
application then constructs the selected surrogate
approximation using the resulting sample data (see
Figure 5) and outputs a separate Java class file,
containing the corresponding surrogate model.  This
Java class can then be compiled and queried as needed
in place of the original analysis code.  The validation
tab (not shown) is currently under development.

Figure 2  Surrogate Modeler – Initialization Tab
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Figure 3  Surrogate Modeler – Variables &
Responses Tab

Figure 4  Surrogate Modeler – Experimentation Tab

Figure 5  Surrogate Modeler – Approximation Tab

To demonstrate the utility of surrogate approximations
and the effectiveness of the proposed method for
capturing the Pareto frontier, two mathematical
example problems are presented next.

3.  Example Problem #1
The first example is a convex, bi-criteria mathematical
function with linear boundary constraints from Ref. 10.
This example is formulated as follows.

Minimize: f1(x1, x2) = (x1 – 2)2 + (x2 – 1)2

f2(x1, x2) = x1
2 + (x2 – 6)2

subject to: g1(x1, x2) = x1 – 1.6 ≤ 0
g2(x1, x2) = 0.4 - x1 ≤ 0
g3(x1, x2) = x2 – 5 ≤ 0
g4(x1, x2) = 2 – x2 ≤ 0

Since the four linear constraints, g1-g4, specify the
region of interest (x1 ∈ [0.4, 1.6] and x2 ∈ [2, 5]), we
choose to sample only within this region to avoid
infeasible solutions.  Therefore, the only surrogate
approximations that need to be constructed in this
example are for f1 and f2, not the constraints.

Two experimental designs are used to sample the
design space as shown in Figure 6: a central-composite
design (CCD) and a Latin hypercube (LH).  Both
designs contain nine points to ensure a fair comparison
between the resulting approximations.

(a) 9 point CCD (b) 9 point LH
Figure 6  Experimental Designs for Examples 1 & 2

The actual values of f1 and f2 at each sample point are
recorded, and the resulting set of sample data is used to
construct second-order response surface models and
kriging models for each objective for each sample set.
These surrogate models are then used to predict the
responses at a set of new design points; we sample a
101 x 101 grid of points to generate the Pareto frontier
using the Pareto fitness function given in Eqn. 1.  The
resulting Pareto frontiers obtained using the response
surface models and the kriging models are shown in
Figure 7 and Figure 8, respectively.  Since this example
consists of two convex, second-order polynomial
functions, the full quadratic response surface predicts
the new points exactly, for both experimental designs.
Consequently, the predicted and actual Pareto frontiers
are identical for the response surface models.

Figure 7  Response Surface Pareto Frontier

Performance space

Pareto frontier from
both response surface models
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Figure 8  Kriging Pareto Frontier

While the response surfaces fit f1 and f2 exactly, error
analysis using maximum absolute error (MAE), average
absolute error (AAE), and root mean square error
(RMSE), is performed on the kriging model for
validation of the Pareto frontier predictions.  The results
of this analysis are listed in Table 1 and are obtained by
comparing the values of f1 and f2 along the actual
Pareto frontier with the corresponding predicted values
of f1 and f2 based on the kriging approximations.

Table 1  Validation of Kriging Pareto Frontiers

Error
Kriging with Central

Composite Design
Kriging with

Latin Hypercube
Measure f1 f2 f1 f2

MAE 0.2632 0.0811 0.0064 0.0047
AAE 0.2587 0.0776 0.0007 0.0008

RMSE 0.2587 0.0776 0.0013 0.0010

Note that the errors listed in Table 1 are quite small
compared to the actual values of f1 and f2, indicating
that the kriging models—using only a constant term and
a Gaussian correlation function—are nearly as accurate
as a full second-order polynomial response surface.
Also note that the kriging models based on the Latin
hypercubes are much more accurate than those based on
the central composite design.  This trend is investigated
further in our second example in the next section.

4.  Example Problem #2
Our second example is a two-dimensional problem with
non-linear objectives and constraints from Ref. 22.  The
problem definition is as follow.

Minimize: f1(x1, x2) = (x1 + x2 –7.5)2 + (x2 – x1 + 3)2/4
f2(x1, x2) = (x1 – 1)2/4  + (x2 – 4)2/2

subject to: g1(x1, x2) = 2.5 - (x1 – 2)3/2  – x2 ≥ 0
g2(x1, x2) = 3.85 + 8(x2 - x1 + 0.65)2 – x2 – x1 ≥ 0

The bounds 0 ≤ x1 ≤ 5 and  0 ≤ x2 ≤ 3 are used to ensure
that the entire feasible performance space is utilized.

Response surface and kriging models are created for the
second example problem, using the same nine point
Latin hypercube and central-composite design shown
previously in Figure 6.  Once again, the response
surface models, for both experimental designs, predict
the Pareto frontier exactly as shown in Figure 9.  The
Pareto frontiers obtained from the kriging models from
both experimental designs are shown in Figure 10.

Figure 9  Response Surface Pareto Frontier

Figure 10  Kriging Pareto Frontier for CCD and
Latin Hypercube Designs

As seen in Figure 10, the kriging models created using
the Latin hypercube design accurately predicts the
Pareto frontier, but the kriging models created using the
central composite design do not.  Error measurements
for f1 and f2 for the points along the Pareto frontier for
both sets of kriging models are listed in Table 2.

Table 2  Validation of Kriging Pareto Frontiers

Error
Kriging with Central

Composite Design
Kriging with

Latin Hypercube
Measure f1 f2 f1 f2

MAE 2.0808 0.2565 0.0094 0.2708
AAE 2.0615 0.2579 0.0074 0.2460

RMSE 2.0616 0.3306 0.0076 0.2986

Performance space

Pareto frontier from
both kriging models

Feasible
Performance

Space

Feasible
Performance

Space

Pareto frontiers
from response
surface models

from Latin
hypercube

from
CCD
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Based on this data, we note that the kriging models
based on the central composite design are much less
accurate than those obtained using the Latin hypercube
design.  The discrepancy results from an interaction
between the kriging model and the experimental design
type.  Due to the location and spacing of the sample
points in the design space in a central composite design,
the correlation matrix based on the Gaussian correlation
function in the fitted kriging model tends to be singular
or near singular when maximum likelihood estimation
is performed to obtain the theta parameters used to fit
the model.  To confirm this, the condition numbers of
the correlation matrices for each response for each
design are listed in Table 3.  We have found that a
condition number smaller than 10-12 indicates that
significant round-off error can occur during prediction
because the correlation matrix is close to singular.
Such is the case for the kriging models of f1 and f2
based on the central composite design.

Table 3  Condition Numbers of Kriging Model
Correlation Matrices

Condition
Number

Kriging with Central
Composite Design

Kriging with
Latin Hypercube

f1 2.8821D-15 1.2165D-09
f2 1.3950D-14 8.5201D-10
g1 1.0345D-08 2.2178D-09
g2 6.4121D-13 2.2982D-06

Despite the slight approximation error in the kriging
models, the Pareto points themselves (i.e., the design
variables x1 and x2 corresponding to each point on the
Pareto frontier) are nearly identical to the actual Pareto
points obtained from the original set of equations, see
Figure 11 and Figure 12.  Figure 11 shows the Pareto
points obtained from the response surface models
overlaying the actual Pareto points; those obtained from
the kriging models based on the Latin hypercube design
are shown in Figure 12.

Figure 11  Pareto Frontier Points for Response
Surface Models for Example 2

Figure 12  Pareto Frontier Points for Kriging
Models for Example 2

While considerable error exists in the Pareto frontier
obtained using the kriging models based on the central
composite design, the kriging models based on the
Latin hypercube design and both sets of response
surface models are able to capture the Pareto frontier
accurately.  In this case, the Pareto frontier is
successfully captured without the use of optimization
even though it is non-convex and discontinuous.
Furthermore, this also demonstrates the importance of
validating the surrogate approximations to ensure that
they are sufficiently accurate before attempting to
capture the Pareto frontier; otherwise, the predicted
frontier and the actual frontier may be vastly different.

5.  Design of a Piezoelectric Bimorph Actuator
Our final example comes from current research work in
which we are trying to simultaneously optimize the
maximum deflection and blocked force of a
piezoelectric bimorph actuator for minimally invasive
surgery.37-39  A piezoelectric bimorph actuator is
created by laminating layers of piezoelectric ceramic
material (PZT) onto a thin sandwich beam or plate.
When opposing voltages are applied to the two ceramic
layers, a bending moment is induced in the beam, see
Figure 13.  A pair of cantilevered piezoelectric bimorph
actuators can be used as a simple grasping device,
where the bimorph actuators are used as active
“fingers” as shown in Figure 14.

Figure 13  A Piezoelectric Bimorph40

. = actual Pareto point (x1, x2)
x = Pareto point from response surface models

. = actual Pareto point (x1, x2)
x = Pareto point from kriging models
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Figure 14  A Piezoelectric Bimorph Grasper

The objective in this example is to design a PZT
bimorph grasper for application in minimally invasive
surgical procedures.  The performance of the PZT
bimorph actuator is evaluated in terms of the tip force
and deflection; a large tip deflection is required so that
the jaws of the grasper can close completely, and a
large tip force is required to securely grasp a suture
needle and prevent it from rolling in the jaws.  These
performance criteria are determined by the thickness
and width of each PZT layer, the length of the actuator,
the material properties, and the applied voltage.  The
force available at the tip is modeled as the blocked
force (i.e., the force exerted with no deflection), and the
deflection is modeled as the free deflection.  The results
from preliminary analysis indicate that a standard,
commercially available bimorph is infeasible for MIS
applications since there is insufficient grasping force
and tip deflection.39  Consequently, a variable thickness
design, where the thickness of the layers is varied along
the length, is proposed to improve the deflection and
force performance of the PZT bimorph actuator.

The piezoelectric bimorph actuator is modeled as a
composite beam with a thin steel sandwich layer and
PZT5H top and bottom layers.  Rather than allowing
the thickness of the PZT layers to vary continuously
along the length, the layers are discretized into five
sections to allow for simple modeling, where the
thickness of each section, ti (i=1,…,5), are the design
variables (see Figure 15).  A finite element model of the
composite variable thickness design is created with
standard cantilever supports at the base nodes.  The
finite element model consists of 1458 eight-node three-
dimensional (brick) elements as shown in Figure 16.
Each PZT section has three elements across its height
and width, and 10 elements along the length.  As the
thickness of the PZT sections is varied in the
optimization procedure, the number of elements
remains constant.  Node compatibility at the section
boundaries is ensured through the use of transition
elements as shown in Figure 15.  These elements are
formed by joining the end nodes from one piezoelectric

section to the start nodes of the next piezoelectric
section.  The length of the transition elements, xtr, is
constant.  The steel beam is modeled using 486 brick
elements, with each section having three elements along
the height and width and ten across the length.
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PZT Elements

Transition Elements
Steel Beam Elementsxtr

y

x

Figure 15  Variable Thickness Actuator

Figure 16  Finite Element Model of Actuator

The finite element analysis is performed using
ABAQUS.  Two types of FE analysis are conducted to
predict (1) the free deflection of the bimorph and (2) the
blocked force while the actuator is subjected to a
prescribed input voltage.  The blocked force condition
is simulated by constraining the nodes at the tip of the
bimorph in the y-direction.  Since the operating
frequency is low (on the order of 1-2 Hz) in MIS
applications, only quasi-static response is considered.

A twenty-seven point central composite face-centered
design is used to sample the design space of interest
defined by the lower and upper bounds of the five
thickness variables (1 mm ≤ ti ≤ 3 mm, i = 1, …, 5).
Data is generated from these 27 sample points to
construct two sets of approximations for comparison:
(1) response surface models and (2) kriging
approximations for both blocked force and deflection.
Both sets of approximations are then used in lieu of the
ABAQUS finite element simulation to search the
design space to find the approximate Pareto frontier.

After constructing both sets of approximations, a set of
twenty-five random points from a Latin hypercube are
used to validate each set of surrogate approximations.
A summary of the maximum absolute % error, average
absolute % error, and root mean square error (RMSE)
for the response surface and kriging models for the
deflection and blocked force responses is given in Table
4.  The error in the predicted deflection is comparable
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for both approximations, with the response surface
model having slightly lower maximum and average
percent error.  However, in the case of the blocked
force response, the kriging model fits the data much
more accurately.  Based on the RMSE for the predicted
deflection and blocked force, the kriging model is more
accurate than the response surface model.

Table 4  Validation of Surrogate Approximations

Error Response Surface Kriging Model
Measure Deflection Force Deflection Force
MAE(%) 13.78 18.99 18.06 8.02
AAE(%) 6.23 4.33 7.09 2.83
RMSE 1.08E-03 1.47E-02 1.20E-06 8.35E-05

To understand the tradeoff between the deflection and
blocked force objectives, the approximations are used
to search the design space and find the Pareto frontier.
The design space is explored by predicting the blocked
force and deflection of 3125 design points (from a 55

grid) using the response surface models and the kriging
models.  The Pareto frontier is then obtained by
selecting points on the boundary of the design space as
predicted by the response surface models and the
kriging models as shown in Figure 17.  The points on
the Pareto frontier, as predicted by the response surface
models and kriging models, are compared to one
another, and the points with common thickness settings
are evaluated in ABAQUS to verify the actual response.
The results of this analysis are also shown in Figure 17.
As seen in the figure, the kriging models are good
predictors of the points along the Pareto frontier, while
the response surface models are not for points that have
a large deflection and small blocked force.  This result
is consistent with the data in Table 4 as the response
surface model is generally less accurate than the kriging
model based on the set of validation points.  It is also
evident from Figure 17 that by varying the thickness of
the piezoelectric layers a substantial blocked force can
be generated, but the tip deflection is still quite low.

To examine the inadequacies of the weighted sum
approach typically used in multiobjective optimization,
a final study is conducted to determine the impact of the
value of the weighting factor w on the optimal solution
of the weighted sum of both objectives (i.e., maximize
deflection and blocked force):

*

*

*

*

)()1(
blocked

blockedblocked

free

freefree

F

FF
wwf

−
+

−
−=

δ

δδ
(3)

where δ*
free and F*

blocked are the individual optimum
values of free deflection and blocked force,
respectively.  The weighting factor, w, is varied from

0.0 to 1.0, using increments of 0.01.  Table 5 and Table
6 show the effect of the weighting factor on the optimal
solutions for the response surface and kriging models,
respectively. Although we expect to obtain several
intermediate solutions by varying the weighting factor,
only the two extreme solutions and one intermediate
solution are obtained using the response surface
models.  As the weight on the deflection is increased,
the maximum deflection solution is obtained until the
weighting factor reaches 0.59, after which an
intermediate solution is obtained until w= 0.88.  The
maximum force solution is obtained when the
weighting factor is in the range 0.89-1.00.  Using the
kriging model, three intermediate solutions are obtained
during optimization.  This confirms the inadequacy of
using the weighted sum approach to capture the Pareto
frontier for non-convex problems; the proposed
surrogate modeling based approach is much more
efficient at capturing the entire Pareto frontier without
having to specify weights for the objectives or use an
optimization algorithm.

6.  Closing Remarks
Preliminary results indicate that the surrogate
approximations prove to be a useful means for quickly
and effectively visualizing the relationship between
competing objectives and can be used to explore the
design space quickly to capture the Pareto frontier.  The
Pareto frontier in Sections 3 and 4 is obtained using a
Pareto fitness function, Eqn. 1, without the need to
specify weights for the objective functions or enlist the
aid of optimization.  The approach works well for both
convex and non-convex Pareto frontiers, even when
discontinuities are present; however, the importance of
validation cannot be stressed enough as discussed in
Section 4.  Finally, flexibility of the proposed approach
has been demonstrated by using two types of
experimental designs (i.e., central composite designs
and Latin hypercubes) and two types of surrogate
approximations (i.e., response surfaces and kriging
models).  The method can easily accommodate a wide
variety of experimental designs and approximations.

While three examples does not completely validate the
method, the results to date are promising.  Additional
testing of the proposed approach on a variety of convex
and non-convex multiobjective optimization problems
continues.  While the examples contained herein are for
multicriteria problems with two objectives, we do not
anticipate any problems scaling our approach to
multicriteria problems with more than two objectives.
We are currently seeking additional examples to
validate these claims and continue testing the method.
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Figure 17  Pareto Frontiers Obtained Using Surrogate Approximations

Table 5  Effect of Weighting Factor on Solution using Response Surface Approximation

Predicted ABAQUS
Weighting
Factor, w

Solution δ (mm) Fblocked (N) δ (mm) Fblocked (N)

0.00 - 0.59 0.0318 0.2171 0.0317 0.1808

0.60 - 0.88 0.0096 0.4245 0.0092 0.4180

0.89 - 1.00 0.0052 0.4321 0.0048 0.4286

Table 6  Effect of Weighting Factor on Solution using Kriging Approximation

Predicted ABAQUS

Weighting
Factor, w

Solution δ (mm) Fblocked (N) δ (mm) Fblocked (N)

0.0-0.78 0.0317 0.1837 0.0317 0.1808

0.79 0.0143 0.2990 0.0148 0.3060

0.80-0.92 0.0092 0.4180 0.0092 0.4180

0.93-0.95 0.0082 0.4308 0.0082 0.3950

0.95-1.0 0.0048 0.4286 0.0048 0.4286


