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Automated Assembly for Mesoscale Parts
David J. Cappelleri, Member, IEEE, Peng Cheng, Jonathan Fink, Student Member, IEEE, Bogdan Gavrea, and

Vijay Kumar, Fellow, IEEE

Abstract—This paper describes a test-bed for planar micro
and mesoscale manipulation tasks and a framework for planning
based on quasi-static models of mechanical systems with inter-
mittent frictional contacts. We show how planar peg-in-the-hole
assembly tasks can be designed using randomizedmotion planning
techniques with Mason’s models for quasi-static manipulation.
Simulation and experimental results are presented in support of
our methodology. We develop this further into a systematic ap-
proach to incorporating uncertainty into planning manipulation
tasks with frictional contacts. We again consider the canonical
problem of assembling a peg into a hole at the mesoscale using
probes with minimal actuation but with visual feedback from
an optical microscope. We consider three sources of uncertainty.
First, because of errors in sensing position and orientation of the
parts to be assembled, we must consider uncertainty in the sensed
configuration of the system. Second, there is uncertainty because
of errors in actuation. Third, there are geometric and physical
parameters characterizing the environment that are unknown.
We discuss the synthesis of robust planning primitives using a
single degree-of-freedom probe and the automated generation
of plans for mesoscale manipulation. We show simulation and
experimental results of our work.

Note to Practitioners—Micro and mesoscale systems technology
is poised to be an extremely strong economic driver in this century.
Market estimations predict large quantities of products involving
this technology within the next decade and more specifically, meso
and microscale assembly shows enormous potential in a vast range
of industrial applications. As more microelectromechanical sys-
tems (MEMS), microfluidic, and optoelectronic devices come on
the market, the complexity and cost of the required manufacturing
equipment and/or skill level of humans to assemble such devices
has also increased. Even though there have recently been substan-
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tial advances in the fabrication of microparts, the assembly and
packaging of microsystems and products still account for roughly
80% of the cost of commercial products. Manual, labor-intensive
manufacturing will no longer be an option in this next generation
of products that will require assembly at the meso, micro, and
nanoscales. Thus, the global trend of miniaturizing products has
led to many new assembly challenges that need to be solved in
order for companies to remain competitive. Therefore, driven by
these increasingly competitive requirements for faster throughput,
higher yield, and quicker “time to profit” of products, the need
for automated robotic assembly of meso and microsystems is quite
apparent. This paper is on deriving the fundamental concepts
needed to make these types of systems a reality. System modeling,
model fitting, open loop motion plans, robust motion primitives,
and quasi-open loop motion plans are synthesized for the canon-
ical peg-in-the-hole assembly task at the mesoscale. Insights on
extending the methodology presented to smaller length scales are
also provided.

Index Terms—Mesoscale manipulation, microassembly,
planning.

I. INTRODUCTION

W HILE mass production techniques derived from hard
automation are routinely applied to microscale (several

microns to tens of microns) andmesoscale (hundreds of microns
to mm) parts, we are not able to achieve micro and mesoscale
assembly in a semi-structured environment with uncertainties.
Indeed, reliably manipulating parts at this scale remains chal-
lenging. There are many reasons for this. For example, there is
a lack of good models of mechanics of contact interactions at
these scales. It is also difficult to measure forces at the micro-
newton level (0–50 range) reliably using off-the-shelf force
sensors and thus, force-feedback control schemes have proved
to be very challenging. Finally, it is even more difficult to grasp
and manipulate parts at the micro and meso level than it is at the
macro level.
A natural question, one that has been asked before [1]–[3],

is if simple open loop or quasi-open loop plans that do not re-
quire precise feedback in real-time, can be designed to accom-
plish such tasks. In this paper, we explore such open loop and
quasi-open loop plans for a mesoscale assembly task. The ma-
nipulation task that we are interested in is complicated due to the
fact that the manipulated object is subject to an unknown and
hard-to-model distribution of contact forces between the sup-
port surface and the object as well as unknown frictional con-
tact forces between the manipulation tool and the object and
between the object and its environment. This is further compli-
cated by the fact that contacts are intermittent. Clearly, analyt-
ical solutions to the forward dynamics problem are impossible
except in the simplest of cases, so simulation-based solutions
are the only viable option.

1545-5955/$26.00 © 2011 IEEE
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We aim to use simulation and motion planning tools to de-
sign manipulation plans that rely only on an estimate of initial
position and orientation (open loop) or estimates of state infor-
mation at a small number of discrete-time intervals (quasi-open
loop). However, manipulation plans are not robust to errors re-
sulting from the uncertainty in the system model. This uncer-
tainty comes from three sources: (a) the force distribution or the
pressure distribution across the contact between parts and the
surface they rest on; (b) the coefficient of friction between the
part and the contacting surface; and (c) the coefficient of fric-
tion between the probe and the manipulated part. While it is
possible to measure these parameters in a laboratory setting, it
is difficult to directly measure these parameters just before or
while performing the task.
Using only open loop or quasi-open loop motion plans makes

the assembly task complicated. Only plans that are robust to un-
certainty in initial positioning and the dynamics can be utilized.
Sensors that limit the initial positioning errors and models that
lend themselves to the analysis of uncertainty of both task error
(initial placement of parts) and model error (estimation of pa-
rameters) are desired. It is important not only to have accurate
system parameter information but also important to have error
models for the system that can be used to plan the manipulation
task. Therefore, the goal here is to be able to come up with a
manipulation plan, consisting of pushing motions, that guaran-
tees successful assembly in the presence of uncertainty. This is
a motion planning problem with frictional contacts at the micro
and mesoscales. To study this problem, the automation of the
canonical problem of the peg-in-the-hole assembly task at the
mesoscale has been investigated and will be presented now. The
technologies used to examine this problem can be directly ap-
plied to more complicated problems at this scale and slightly
modified to apply to similar problems at the microscale.

II. RELATED WORK

The derivation of the fundamental mechanics of pushing op-
erations and sliding objects have been extensively studied by
[4]–[6]. There is also extensive work addressing the analysis and
simulation of mechanical systems with frictional contacts. In
particular, semi-implicit and instantaneous-time models for pre-
dicting motion and contact forces for quasi-static multi-rigid-
body systems have recently been developed [7], [8].
A good survey of motion planning under uncertainty is

available in [9] and [10]. Pushing operations and the instan-
taneous motions of a sliding object during multiple contact
pushing are examined and the manipulation primitive of stable
rotational pushing is defined in [11]. The problem of planning
pushing paths using stable pushes is discussed in [12]. In [13],
the bounds of the possible motions of a pushed object are
investigated. Reference [14] presents a comparison between
the dynamic and quasi-static motions of a push object.
Open loop motion strategies, without the use of sensors, can

be used to eliminate uncertainty and to orient polygonal parts
[1], [2], [15]. Other motion planning techniques have been ap-
plied to planning pushing paths with the presence of obstacles
[16] as well as for multiple manipulators and obstacles [17]. To
remove the uncertainty associated with robot pushing tasks, [18]
establishes stable orientation and positions by pushing objects
with two-point fingers.

For microscale manipulation, sticking effects due to Van der
Walls forces and static electricity make the manipulator motions
and part release more complicated [19], [20]. Micromanipula-
tors also have limited degrees of freedom when compared to
manipulators at the macroscale. These problems are addressed
in [3] with a parallel-jaw gripper and squeeze and roll primi-
tives to orient a randomly oriented polygonal part up to 180
symmetry without the use of sensors. However, in the case of
the mesoscale sized parts used here, these sticking effects are
not an issue since the characteristic dimensions are on the order
of 1000 (1 mm) [19], [21].
On the other hand, the literature addressing micromanip-

ulation with real-time sensor feedback is more limited and
quite challenging [22]–[27]. The primary reason for this is
that obtaining accurate sensor data is a difficult problem at
this scale. Sensors cannot easily be affixed to tiny precision
instruments without compromising their functionality [20].
The use of high-resolution optical systems with controllable
parameters for micro-assembly tasks are examined by [28].
Even with this sensor data, calibration and vision-based control
at this scale can present technical difficulties. Without accurate
sensor data, it is challenging to develop models, and therefore
controllers, for micromanipulation.
Gripping and manipulation techniques for micro-assembly

applications is an active area of research [29], [30]. Specifically,
there is a body of work pertaining to pick-and-place micro-
assembly tasks using microgripping techniques and strategies
[31]–[37]. The focus here is rather on mesoscale (and eventu-
ally microscale) pushing operations, which are better suited for
open loop or quasi-open loop manipulations. For manipulation
and assembly tasks at small length scales, surface forces, such
as stiction, friction, and electrostatic forces, dominate. They also
increase with increased contact surface area. Thus, they can be
reduced by pushing the parts with probe tips that have smaller
surface contact areas than the jaws of typical microgrippers.
Since most parts are planar, access to the parts from the top is
possible. Grasping the part with a suction gripper can be per-
formed, however, it can only be used to approximately position
the parts due to the difficulties, in part, releases resulting from
aforementioned dominant surface forces. Therefore, manipula-
tion and assembly with a gripper is not a preferred technique and
manipulations with point probes, with decreased surface contact
area, are utilized here.
Modeling dry friction is a notoriously difficult problem area.

Estimations of friction parameters for pushed objects to im-
prove the control of pushing have been investigated previously
on larger objects and with different strategies than the ones pre-
sented here. In [38], test pushes on different objects with known
support surfaces are used to estimate support surfaces experi-
mentally. It leaves the open question of how the hypothesized
support points for an unknown object should be chosen. Sim-
ilarly, in [39], a method for estimating the friction distribution
of an object and the center of friction from pushing the object
several times is presented. In both of these papers, a grid system
of possible support points is applied to the base of the object
being pushed. The respective algorithms determine the distribu-
tion of the normal force of the object at these support locations.
In our previous work, estimates of surface friction for mesoscale
manipulation are experimentally determined [40]. Also, in some
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Fig. 1. Canonical peg-in-the-hole task: move part from configuration A to con-
figuration B (left); typical part and fixture dimensions (right).

of our current experiments, the support surface is coated with a
thin film of oil which circumvents the difficulties of modeling
dry friction. At the micro and nanoscales, higher order nonlin-
earities and different asperity models can and have been em-
ployed for controlling a variety of stick and slip devices and
end-effectors [41]–[43].
In particular, the problem of finding motion primitives that

rely on pushing and are robust to errors has received signifi-
cant attention [44], [45]. A pushing control system with visual
feedback for open loop pushing is described in [46] as a way
to mitigate the instability of pushing with point contacts. To re-
move the uncertainty associated with robot pushing tasks, [18]
establishes stable orientation and positions by pushing objects
with two-point fingers. The problem of planning pushing paths
using stable pushes with line contact is discussed in [12], and
conditions on the pushing directions are derived that ensure that
line sticking contact will always be maintained. Sampling-based
motion planning algorithms that attempt to find paths that min-
imize uncertainty have also been explored in the literature [47],
[48].

III. CANONICAL PROBLEM

The canonical problem of the peg-in-the-hole task at the
mesoscale is defined here as assembling a planar, rectangular
part into a planar, rectangular slot (Fig. 1) using pushing
operations.
In macro assembly, the peg-in-the-hole situation (or simply

insertion) is relatively generic of most assemblies. In precision
micro and mesoscale assembly, peg-in-the-hole tasks also occur
but with more difficulties such as [21], [49], and [50]:
• Identifying the peg and the hole, their exact position, the
axis of the hole.

• Gripping/manipulating the peg.
• Aligning the peg axis with the hole..
• Inserting the peg in the hole while limiting the constraints
on the components.

• Position control.
• Uncertainties in sensing, actuation, manufacturing, and
modeling.

This task is a good representation of the micro and meso-
assembly environment for the following reasons: First, it’s a
two-dimensional problem, which is typical at both the micro
and mesoscales. Second, the inertial forces in the rigid body
dynamic model are not significant as is also typical in tasks at
these scales. Therefore, frictional forces are very important here.
Finally, the task involves multicontact interactions between the
part and the environment. Therefore, the techniques applied in
the study of this mesoscale problem can be generally applied to
other examples at this and the microscale.

Fig. 2. Micro/mesoscale manipulation experimental test-bed.

IV. EXPERIMENTAL SETUP

Themanipulation system used in this study is shown in Fig. 2.
It consists of an inverted optical microscope and charge-cou-
pled device (CCD) camera (for sensing the configuration), a
four-axis computer controlled micromanipulator, controller, a
three-axis manual micromanipulator, 5 and 25 diam-
eter tip tungsten probes, a motorized stage, and control
computer. The 4X microscope objective used in this applica-
tion produces a field-of-view (FOV) of 3.37 mm 2.52 mm.
The CCD camera records the images in the FOV and sends them
to the control computer at 30 Hz (lower frequency with image
processing). The micromanipulator with controller has a min-
imum incremental motion of 0.1 along four axes, with a
maximum travel of 20 mm, with speeds ranging from 1.6
to 1.7 mm/s.
The fixtures and parts are made out of beryllium copper

using a photochemical machining (PCM) process (sometimes
referred to as chemical milling or chemical etching) (Fig. 1).
This technique is useful for manufacturing high-precision flat
metal parts [51]. The beryllium copper material is 1.5 mil
(0.0015 or 40 ) thick. The fixture has two channels of
different thickness etched into it (1936 and 976 ,
respectively) but it also has a rectangular section etched out
of it that is 1.63 mm 1.15 mm . It is
used as a playpen area where unconstrained motion tests can
be performed for system characterization experiments. The
hole or fixture is attached to a glass microscope slide which
is coated with a thin layer of mineral oil for the parts to slide
on. Various size parts were manufactured through the PCM
process. Typical dimensions for one such part are shown in
Fig. 1. Standard image processing techniques, such as template
matching and sum-of-squared differences (SSD) tracking, are
used to sense the state of the system in real-time. The state
consists of the position ( ) and orientation of the peg
and the probe tip position(s) .

V. OPEN LOOP ASSEMBLY PROBLEM FORMULATION

Due to the small size and mass of the part, the inertial forces
do not dominate during these planar pushing operations [20].
For these manipulations, the velocity for the probe is set to one
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of three discrete values: 140.0, 75.0, or 7.4 . The inertial
forces are then on the order of nano-newtons for the acceler-
ations involved, while the frictional forces are on the order of
micro-newtons. Therefore, the frictional forces dominate the in-
ertial forces and one can adopt a quasi-static framework to solve
for motions of the peg. This framework together with the fric-
tional constraints and the rigid body constraints can be posed as
a complementarity problem [52], [53] and subsequently solved
to determine the overall motion of the system at every time-step.
Simulation-based randomized planning algorithms can then be
used to design manipulation plans for the peg insertion problem
[10].

A. Quasi-Static System Modeling

A semi-implicit time-stepping scheme [8] that is specialized
to a problem, where all parts and contact interactions
are essentially planar and surface friction in the plane is mod-
eled with a simple force distribution, is used here. All con-
tacts are assumed to behave according to Coulomb’s friction
model. The interaction between the part and the supporting sur-
face is modeled by three frictional point contacts as in [4]. This
problem of a planar polygonal part sliding with surface friction
and quasi-static constraints can be formulated as a mixed linear
complementarity problem (MLCP) [8]. For a multibody system
with degrees of freedom, the quasi-static equations of mo-
tion, and time-stepping are

(1)

(2)

where is the generalized configuration vector,
is the generalized velocity vector, is

the Jacobian matrix, contains the normal
wrenches for each of the pushing , and support

contacts with normal constraint forces .
contains the frictional wrenches (with

the friction cone linearized into directions for each contact)
with frictional forces , and represents the
external forces. The rigid body nonpenetration constraint and
linearized Coulomb friction law result in a set of complemen-
tarity conditions.
The uncertainty in support pressure distribution and contin-

uous nature of the surface contact makes it difficult to model the
system. However, if the support is modeled by three frictional
point contacts, the normal force distribution can be found based
on a out-of-plane force balance, and the maximum allowable
frictional forces resulting from these normal forces can be used
in the MLCP formulation. However, uncertainties in the exact
locations of the correct three support points are now introduced
into the model. For the purposes of simulation and modeling,
the manipulator can be considered an arbitrary convex polygon
in the plane with position . Because of the choice to use a
three-point support approximating pressure distribution, the part
can, in fact, be any planar polygonal shape. The probe is mod-
eled as a polygon with a 25 side. During the experiments,
contact between the probe and part occurs at one of the vertices
on this side (point contact) or with the side (line contact).

By partitioning the MLCP formulation in [8] and [54], one
can take advantage of these known normal forces for the support
points and the assumption that the bodies are constrained to the
plane to reduce the dimension of the MLCP that must be solved.

B. Planning Problem Formulation

The goal is to determine a sequence of manipulator steps that
will successfully accomplish the peg-in-hole task. To model this
system, suppose the rectangular peg has three support points
at positions from its center-of-mass. The peg is ori-
ented at degrees from horizontal and the manipulator (probe)
is pushing at a point .
For a given configuration of the peg, the control inputs ex-

plored by the motion planner are determined by calculating and
discretizing the peg edges that can be pushed by the probe. Fur-
ther, it is required that one of the two components of the motion
of the probe to be zero. In other words, for simplicity, motions
are restricted to be along either the or axes.
When a peg state near the specified goal is reached, a mo-

tion planning algorithm will compute the series of manipulator
movements to apply each necessary control input. The manipu-
lation plan is completely represented as a vector , where each
element corresponds to a probe movement command. A probe
movement command will be or (0, ) cor-
responding to a probe movement of or along the
axis or axis, respectively. Each element is related to the
quasi-static time-stepping model by calculating the duration for
the push according to the specified probe velocity.

VI. SYSTEM IDENTIFICATION

A software tool has been specifically designed to provide
a simulation environment well suited for design and planning
tasks that require accuracy and flexibility in [55]. It employs a
plug-in architecture so that modules can be substituted for a va-
riety of motion models (first-order, quasi-static, dynamic) and
time-stepping methods. Most importantly, it provides for rapid
development of design optimization or motion planning algo-
rithms while providing the ability to easily choose the appro-
priate dynamic modeling for a given application. It has been
used here with the quasi-static system model.
There are several parameters present in the simulation model

that affect the mechanics of the manipulation task and are un-
known. These are the following.
• : Coefficient of surface friction.
• : Coefficient of manipulator-part friction.
• : A 3 2 matrix specifying the and positions of the
support-point locations.

The coefficients of friction and are constrained to the
range [0.0, 1.0]. Support-point locations must obviously lie
within the dimensions of the part being modeled. Additionally,
their convex hull must include the part’s center-of-mass so
that the appropriate normal force at each support point can
be calculated. The set of parameters is an eight-dimensional
parameter space. The goal is to find the point in the parameter
space and the neighborhood of the point that most closely
characterizes the uncertainty in the system.
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Fig. 3. Nominal initial conditions of part for manipulation tests.

In order to design open loop or quasi-open loop manipula-
tion plans robust to the system uncertainties, nominal values for
the critical system parameters must be identified. Many sets of
manipulation tests were used to identify and characterize the
parameters in the eight-dimensional parameter space. Manipu-
lation tests consisted of horizontal moves with contact between
the probe and the part over distances of approximately 700 ,
executed on both the long and short side of the part. Fig. 3 shows
schematics of the part in its nominal initial conditions for eight
sets of tests. The coordinate system is chosen to align it with
that of the images obtained from the vision system. Pushes were
made on the long side of the part at five nominal positions—at
the midpoint of the side (Fig. 3, pt. C), midpoint (pt. B),
midpoint (pt. D), midpoint (pt. A), and midpoint

(pt. E), where corresponds to the length of the long
side of the part. For these pushes, the part was nominally placed
at angle of 90 . The short side pushes were located at three nom-
inal positions—at the midpoint (pt. G), midpoint (pt. F),
andmidpoint (pt. H), where corresponds to the length
of the short side of the part. These pushes start with the part
nominally placed at angle of 180 . A minimum of three trials
for each manipulation test were executed.
The method employed for the system identification seeks to

answer the following question: Given experimental data con-
sisting of trajectories for each of the manipulation test experi-
ments, what is the parameter vector , consisting of , , and
, that best explains the experimental data? This estimation al-

gorithm estimates parameters such that the simulated manipula-
tion test results match the experimental results from the execu-
tion of real manipulation tests as well as possible. Because the
manipulated part’s motion is a nonconvex and nonsmooth func-
tion of the system parameters, one cannot use gradient methods
for optimization. This limits the choice of optimization algo-
rithms to ones that rely only on the evaluation of an objective
function at different points. The objective function to be
minimizing here is related to the fitting of simulation to experi-
ments over several trial test manipulation runs. For each trial,
and a given parameter vector , the simulated motion is com-
puted, and the root-mean-squared error along each axes
(with scaled by the characteristic length of the part to nor-
malize) determined. A quality measure for the single trial simu-
lation fit is computed via the -norm (3). When fitting across

Fig. 4. Experimental trajectories for manipulation Test 1.

several experimental trials, the total objective becomes the av-
erage of quality measures across all trials (4)

(3)

(4)

It should be noted that a single evaluation of requires
individual simulations.
The Nelder–Mead algorithm [56] (also known as the down-

hill simplex method), a common method used for solving
nonlinear optimization problems when the objective function is
nondifferentiable, is used here. The algorithm uses a
simplex to find locally optimal solutions through successive
evaluations of an objective function and transformations of
points on the simplex. The algorithm is initialized with a value
of based on random valid support point locations and coeffi-
cients of friction. The objective function is customized to
return arbitrarily large values when given a parameter choice
violates the constraints. The algorithm is stopped when the

simplex size (measured as the average distance from simplex
center to each point) goes below a threshold. This is an adequate
stopping criteria as the algorithm contracts the simplex when
it finds a minimum.
Since the Nelder–Mead method is a downhill search tech-

nique, it can be stuck in local minima and fail to find the
globally optimal solution. In order to reduce this possibility,
the algorithm is initialized with several different random points
in the parameter space. Since it is believed that the parameter
space may have multiple points that closely match the exper-
iments, this practice has the added benefit of finding several
good parameter selections that can be used to help characterize
the model uncertainties that a manipulation planning algorithm
will have to consider.
1) Experimental Errors: At least three trials for each ma-

nipulation test were performed. The trajectories for each of the
trials were not all the same. They were consistent for the most
part, but for certain starting configurations small variations from
the nominal starting configuration of the part and probe can pro-
duce substantial changes in the resulting trajectory. For each
manipulation test performed, the trajectory of the parts all
showed the best correlation between the trials, while the and
trajectories appear coupled and comprise most of the trajec-

tory errors. Test 1 is an example of a manipulation test that is
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Fig. 5. Manipulation test showing large sensitivity to small errors in initial con-
figuration. (a) Experimental. (b) Simulation.

sensitive to initial conditions, as shown in Fig. 4. This test in-
volves pushing at the midpoint of the long side of the rectan-
gular part. A horizontal push directly at the center-of-mass of
the part should intuitively result in a pure translation, as seen
in the figure for Trial 3. In general, small perturbations from
this starting configuration will yield either clockwise or coun-
terclockwise rotations for the same nominal test as seen in Trials
1, 2, 4, and 5. Most of this can be attributed to errors from the
nominal starting position at the beginning of the tests. The accu-
racy of the vision system is conservatively estimated to be 1
pixel, which corresponds to position measurement errors of the
probe and the part of roughly and angular measurements
of roughly error.
Fig. 5(a) demonstrates the experimental trajectories from Test

1 that should result in a pure translation but actually produce a
wide range of rotations. However, as we can see from Fig. 5(b),
our model and therefore the simulation predict this sensitivity.
When the simulator is presented with initial conditions for the
part that lie in a neighborhood of within 5 and 0.005 of the
nominal position, the resulting trajectories exhibit a variation
that is similar to that observed experimentally. Because the out-
come is more sensitive to small errors in initial configuration, it
is clear such pathological initial conditions should be avoided
for manipulation planning.
2) Parameter Estimation Results: Only experimental re-

sults from manipulation tests that were generally repeatable

TABLE I
ESTIMATED PARAMETER VALUES FOR EXAMPLE

Fig. 6. Support point locations for and .

were used—avoiding “pathological” configurations. The
Nelder–Mead-based estimation algorithm is able to match
simulated trajectories to experimental trials with average
root-mean-squared error of 20–40 in position and of 1 –3
in orientation over a 600 motion of the probe/part. Smaller
motions result in smaller errors. The failure to obtain more
accurate matches across large sets of trials could be partially
attributed to measurement errors, not only the 5 , 0.005
error in measuring the trajectories, but also the effect of these
errors in estimating the initial configuration. However, it is
also likely that failures are the result of inconsistencies in the
supporting surface.
By initializing the estimation algorithm with several random

parameter choices, the algorithm often discovers more than one
local minima in the parameter space. One choice of parame-
ters can closely match some experimental trials while another
choice can match other trials well. For a concrete illustration of
the result from parameter estimation, a simple parameter esti-
mation is performed using two experimental tests as input. The
algorithm is initialized with two random sets of parameters
and found two possible solutions and (Table I, Fig. 6).
As an additional test of the quality of and , results of sim-
ulating another trial that was not used for parameter estimation
were evaluated. The uncertainty of the locally optimal param-
eter solutions is approximated by the size of the Nelder–Mead
simplex which is also the stopping criteria of the implementa-
tion and set to 10 in this case. Specific values for and
are shown in Table I and Fig. 6. Although the parameter sets
and are distinct, they are qualitatively similar since they

produce trajectories with comparable errors from experimental
trajectories. Note: the solution for the support point locations
are not unique, i.e., the same trajectory can be solved for using
different sets of support points [4].
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The solutions and are similar but have a large discrep-
ancy in the value of . In fact, it was observed that in simulation
the value of has minimal affect on the trajectory of the part.
This is due to the fact that it is the distribution of support force
and not the coefficient of surface friction that will affect the mo-
tion. Since the test-bed cannot sense the force being applied by
the probe, one cannot observe the actual frictional forces being
exerted.

VII. RANDOMIZED PLANNING ALGORITHM AND

EXPERIMENTAL RESULTS

A sampling-based motion planning algorithm inspired by the
RRT algorithm [57] with modifications for dynamic systems
described in [58] was developed here to produce relatively
short manipulation paths. Instead of searching for continuous
input trajectories , the input is parameterized by a -di-
mensional vector using piecewise-constant functions with
compact support. When using an RRT algorithm for dynamic
systems such as this, there is always a tradeoff between the
coarseness of the discretization and the number of iterations
necessary to find a goal. For this problem, discretizing the
reachable peg surface into 100 pushing locations led to solu-
tions in as few as 12 iterations of the RRT algorithm. However,
since the number of control inputs to test at each iteration is
large and the LCP-based method of simulation can be compu-
tationally expensive, the algorithm took on the order of 10–20
min (on a 1.8 GHz PC) to find a solution. Typical solutions
include about 7–10 pushing operations which is comparable
to an initial, intuitive, solution to the problem. It should be
noted that based on the assumptions used here, one cannot
smooth or shorten the manipulation paths produced. Since we
are searching in the space of control inputs on a system that is
inherently nonsmooth, it is not possible to go back and attempt
to “smooth” the part trajectory. Furthermore, smoothing the
control input trajectory could result in a drastically different
part trajectory due to the nature of the problem. It was found
that while RRT produced open loop manipulation plans that
were feasible when used in experimentation and sometimes
succeeded, the plans are not robust to error in the support
friction modeling or the initial positioning of the peg. Thus, the
overall success rates for the RRT-based plans were approxi-
mately 60%–70%. Fig. 7 shows snapshots of the experimental
execution of an automatically generated RRT-based motion
plan. Because the clearance between the rectangular part and
the slot is 137 , it is possible to use the approximate model
for successful assembly. However, it is clear that tighter toler-
ance tasks will require better models.
The success rates for the RRT manipulation plans lead us to

wonder if the cause for failures is due to problems with the ro-
bustness of the plans themselves or if perhaps inaccuracies in
the simulation of the pushing dynamics are to blame. Therefore,
we can parameterize the structure of an intuitively derived ma-
nipulation plan to investigate this cause. Table II shows a plan
designed with this methodology. Note, the origin for the coor-
dinate frame is the top left corner of the fixture in the image.
Intuitively, we know that the peg has to be rotated first before
it can be pushed into the hole. Thus, the first moves in the intu-
itive plan is to move the probe tip from it’s initial position at the

Fig. 7. Manipulation task: experimental results obtained from a plan generated
by the model in Table I.

TABLE II
MANIPULATION PLAN PARAMETERS FROM SIMULATOR

midpoint of the long side of the peg towards the top end of the
peg and then translate it along the axis in order
to rotate it. Since the part is not pinned at its center of mass, it
will not rotate perfectly 90 so in the next step, the probe tip is
moved down to get the total rotation of the peg as close to
90 as possible. The inputs are moves to reposition
the probe tip to the right, middle region of the short end of the
peg so that in the final move, an axis move can be used
to translate the part into the hole. Therefore, the output of our in-
tuition is a predefined seven step sequence with unknown probe
movement amounts. The parameters for this plan are found by
trial-and-error with our simulator. Note: this procedure can be
automated in the future but is currently a manual process.
Several trials of the intuitive plan with the parameters deter-

mined from the simulations were executed with the microma-
nipulation test-bed. In the trials, the starting position for the peg
varied from the nominal starting position by at most 26 ,
74 , and 3 in the , , and coordinates. The maximum
differences between the probe starting and nominal positions
were 11 and 21 in and , respectively. All of the
trials resulted in successful placement of the peg in the hole.
Fig. 8 shows a detailed comparison between simulation and ex-
perimental results for an intuitively designed plan. The discrep-
ancy at time can easily be explained by the initial peg
position error. Subsequent errors are both a result of this ini-
tial error as well as inaccuracies of the time-stepping model and
its parameters. Note that even with the error in the initial peg
position and model inaccuracies, the plan is successful in ex-
perimentation and closely matches the simulated data.
The results described here are promising and illustrate the po-

tential for the use of quasi-static mechanics with models of fric-
tional contact. However, there are some shortcomings. The RRT
algorithm that was used did produce feasible open loop ma-
nipulation plans. While these plans were sometimes successful
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Fig. 8. Plot comparison of insertion plan in simulation and in experimental
trial.

when carried out experimentally, they were not robust to error
associated with the uncertainty in the support friction models
or to those associated with the initial positioning of the peg.
Thus, an intuitive motion plan was generated to increase ro-
bustness and executed experimentally to successfully accom-
plish the task. The higher success rate for this plan leads us to
conclude that the plans generated automatically via the RRT al-
gorithm are missing the “qualities” of a plan that is robust to
modeling error. Therefore, in the following sections, an investi-
gation to determine the exact properties that constitute a robust
manipulation plan is presented. The improved framework to au-
tomatically design quasi-open loop plans, robust to the system
uncertainties, will now be described as an enhancedway to solve
this mesoscale assembly problem.

VIII. ROBUST MOTION FRAMEWORK FOR

QUASI-OPEN LOOP ASSEMBLY

We will now investigate the quasi-open loop assembly
problem, in which an open loop control is calculated based on
visual feedback at discrete moments. The manipulation problem

is studied in the framework of motion planning for systems
that are subject to both differential equations and uncertainties.
In this section, the framework for the general problem and a
general planning methodology based on robust motions will
be described. The application of the general method in the
manipulation problem is described in Section IX.

A. Problem Description

Assume that the motion of the control system in the given
environment is characterized by , in which

is the state, is the input, and
is the parameters for the system and environment. Given a

control , a parameter history , and
a state for some (varies with ), the trajectory
(a.k.a. motion) under and from is

.
Consider three bounded uncertainty sets stemming from

sensing , control/actuation , and the environment
.

1) Sensing uncertainty: It is assumed that sensors can esti-
mate the global state of the system with bounded error .
Let and , respectively, represent the actual and sensed
states of the system. There is then , in which

is the -neighborhood of state
with respect to a metric on . Note: rep-

resents any state in except the initial state .
2) Control uncertainty: It is assumed that actuators will re-
alize the commanded control with a bounded error . Let
and , respectively, represent the actual and intended

controls for the system. Then, there is .
3) Modeling uncertainty: It is assumed that the geometry and
the physics of the underlying model are parameterized by
with bounded error . Let and , respectively, represent
the actual and nominal parameter history. Thus, there is

.
Given a sensed initial state and a goal set

for a specified and , the objective is to compute
a control (that may depend on feedback information) which
will drive the system from to under uncertainties.

B. Planning With Robust Motion Primitives

To solve the above problem is quite difficult. Because com-
plete algorithms are difficult to find except for the simplest of
problems, the synthesis of plans that are obtained by composing
robust motion primitives are pursued. Robust motion primitives
are used to define controls whose resulting trajectories will pre-
serve a specified property of interest in the presence of uncer-
tainties. A property of interest is modeled by a characteristic
function, , which maps a trajectory into 0 or 1. If ,
then it can be said that the trajectory satisfies the given prop-
erty and is called a -motion. The admissible set for a property
is . If the system has uncertainty bound

, the uncertainty neighborhood of trajectory
is

. A -motion is a robust motion primitive only if its uncer-
tainty neighborhood is contained within the admissible set.
The composition of robust motion primitives is now consid-

ered. Let and be two properties. If there exists a robust
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Fig. 9. Planar manipulation with a single degree-of-freedom, dual-tip probe
and a passive single-tip probe. There are three sets of operations that can be
performed.

-motion and a robust -motion such that the -motion can
be reliably appended to the -motion under uncertainties, then
it is possible to sequentially compose the motion primitives.
Thus, this approach to planning will involve the construction

of a set of robust motion primitives followed by their sequential
composition. At this point, a graph search based motion plan-
ning algorithm in [10] can be used to synthesize the motion plan.
It is worth mentioning that such algorithms are generally not
complete because they restrict the search space from the orig-
inal control space to a smaller one consisting only of robust mo-
tion primitives.

IX. MOTION PLANNING WITH UNCERTAINTY

A. Experimental System Configuration
The micro/mesoscale manipulation test-bed is now config-

ured with two types of probes: a passive Single-Tip Probe (STP)
and an active Dual-Tip Probe (DTP). The STP is passive and al-
though it can be positioned, its motion is not controlled during
manipulation since it is mounted to themanual manipulator. The
DTP is mounted to the computer-controlled micromanipulator
and is actuated along one direction (the axis) and can be used
either for single- or two-point contact (see Fig. 9).
The control of the DTP is fully characterized by

(see Fig. 10), denoting a push in -di-
rection with relative distance with duration and constant
speed . The other two inputs are continuous.
As mentioned before, there are three sources of uncertainty.

The sensing uncertainty arises because of the limitation on the
magnification and resolution of the camera. Because of the 4X
objective being used, each pixel subtends only 5.26 , the er-
rors in positions are approximately and the error in es-
timating the orientation of a part is 0.3 .
The control uncertainty exists only in the probe position. The
errors in probe position relative to the part are also of the order
of . Errors in geometric parameters stem from manu-
facturing imperfections. The part is not a perfect rectangle, as
shown in Fig. 1. The tips of the DTP are of different lengths,
in which one tip is longer than the other, reflected in the angle
in Fig. 10 (bottom). However, it is assumed the exact dimen-

sions are known. The principal source of modeling error stems
from surface friction and the coefficient of friction between the
probe(s) and the part.

B. System Dynamics

Again, a quasi-static model for the system is used. It is as-
sumed that the support plane is uniform and all pushing motions

Fig. 10. Pushing with one-point (top) and two-point contact (bottom). In the
bottom picture, the DTP is shown with the exaggerated misalignment between
its two tips for better visualization.

of the probes are parallel to this plane. The most important as-
sumption is about the support friction. Rather than using a three-
point support model, a viscous damping model is used. Because
the support surface is coated with oil (Extra Heavy Mineral Oil,
LSA, Inc.), it is reasonable to assume viscous damping at the
interface. Based on experimental data, the model is
chosen in which is the velocity of the part
(peg) with configuration ; is the corresponding vector
of forces and moments; and is the damping diagonal matrix
with diagonal elements , , and . The coefficient of
friction between the probe and the part is . These parameters
are computed by parameter fitting with experimental results (see
Section X-A). Finally, it is assumed that the only contacts that
occur are between the probe and the part. Although the assembly
task is considered as the goal, only the problem of guiding the
part into the designated slot without any collisions with the en-
vironment is being considered at this time.
From quasi-static analysis, one obtains
, where denotes the wrench vector and the magni-

tude of the contact force, with subscripts and indicating
normal and tangential directions, and the superscript denoting
the contact. Again, complementarity constraints for sticking,
sliding and separation are included in the model [8], [54].

C. Properties of Motions and Admissible Sets

There are many properties of interest for pushing primitives
for the mesoscale manipulation task at hand, e.g., inputs that
guarantee particular motions on of a part. Three such proper-
ties are used here from which robust motions can be systemati-
cally constructed. The first property is to maintain the one-point
sticking contact with counter clockwise (or clockwise) rotation.
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The second property is to maintain the two-point sticking con-
tact for the DTP. The third property is that the orientation of the
final state of the motion is close to 0 or radians (because the
slot is horizontally oriented). Sufficient conditions for motion
primitives that guarantee each of these properties are presented
next.
1) One-Point Sticking Contact With Counter Clockwise Ro-

tation: Only the case in which and the probe pushes
on the long edge of the part (see Fig. 10 top) is considered here.
However, other cases, such as pushing on the short edge or the
left side of the part, can be analyzed similarly.
The following provides the conditions for a static point:

(5)

in which , , is
the perpendicular contact force, and is the tangential contact
force. In order to form a sticking contact, the ratio of must
be less than , in which is the friction coefficient.
From (5), one can infer the property of the whole motion just

from its initial point, which is stated in the following lemma.
Lemma 1: If the part starts a counter clockwise rotation with

sticking contact at the initial point with orientation
[satisfying (5)], as shown in Fig. 10 (top), then the part will
keep counter clockwise rotation with sticking contact until its
orientation reaches

(6)

Therefore, we need to: (1) choose a set of pushing contact
points using uniform sampling with dispersion along the edge
being pushed; (2) for each pushing contact point: (2a) check
whether this push is sticking under the nominal condition; (2b)
check whether the push is still sticking when all the combination
of maximal uncertainties are involved; and (2c) if the push is
always sticking, then this nominal push is robust and reported;
and (3) if all the pushing points in the current sample set are
not robust, decrease the sampling dispersion to get a denser set
of pushing points and repeat steps (2a–2c). The iteration will
stop when the sampling dispersion is no larger than the maximal
uncertainty.

Proof: The derivatives of and with respect to
are as follows:

(7)

(8)

It can be observed that both derivatives are strictly positive be-
fore reaches (6). Therefore, if the part rotates counterclock-
wise in the sticking mode at the
initial point, then the part will keep staying in the sticking mode

because will keep increasing and will keep strictly
positive as increases.
2) The Two-Point Sticking Contact: Only the case in which

and the DTP pushes on the long edge of the part and
the contact is sticking is described here (see Fig. 10 bottom).
The following equations ensure that the two point contact will

be sticking at a static point:

(9)

The following lemma shows whether the whole motion has
a two-point sticking contact can be determined from the initial
point.
Lemma 2: If the part starts with two-point sticking contact,

as shown in Fig. 10 (bottom), then the pushing will stay in the
two-point sticking contact mode.

Proof: It is because (9) depends on the orientation and the
orientation is invariant when the initial point has the two-point
sticking contact.
3) The Orientation of the Final State is Close to 0 or Ra-

dians: This property will be achieved in a motion by pushing
the part with the active DTP with a separation

(10)

to the passive STP to guarantee the intended rotation under
sensing and control uncertainties (see Fig. 11 left). Such pushing
will ensure that the final orientation will be in -neighborhood
of , in which

(11)

Remark: In order to guarantee existence, the pointed cone
assumption requires , where is
the angle of the friction cone. This is clearly satisfied by (10).
However, for this motion, one cannot guarantee uniqueness of
the resulting trajectory. In this case, the property of interest (the
desired change in orientation) does not depend on the specifics
of the trajectory and thus the lack of a guarantee on uniqueness
is not a problem.

D. Computing Robust Motions From the Admissible Sets

Generally, a simple sampling-based algorithm is used to find
a robust motion with respect to a given property at a given state.
The sampling dispersion is incrementally decreased along each
dimension of the input space until the dispersion reaches the re-
spective control uncertainty bounds. Initially, the sampling dis-
persion in each dimension of the input space is chosen to be the
half of the maximal distance. In each iteration, the sample points
in each dimension with respect to its current sampling disper-
sion are combined to generate all possible inputs. Each input is
tested for membership in the admissible set under the nominal
state and parameters. If no input is in the admissible set, then
the sampling dispersion is decreased by half and the algorithm
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Fig. 11. Robust rotational motion (left) and planning problem setup (right).

goes into the next iteration. If an input is in the admissible set
under the nominal state and parameters, then this input is tested
to see whether it is still in the admissible set under the maximal
uncertainties in sensing, control, and parameters. If yes, then
the motion from this input is returned as a robust motion. If no
robust motion is found when the algorithm stops, then there ex-
ists no robust motion with respect to the given property under
such uncertainties. This method could be expensive computa-
tionally if the uncertainty space is high dimensional. In that case,
human intuition could provide some heuristics for searching ro-
bust motions.

E. Planning With Robust Motion Primitives

The assembly task considered here has the initial configura-
tion with orientation , a goal position of (0, 0), and a goal
orientation of , with position tolerance of and
orientation tolerance (see Fig. 11 right). Ideally, there
will be two DTP in the system, one on each side of the part, and
thus no requirement on the position of the part in the ini-
tial configuration would be needed and only the initial orienta-
tion requirement necessary for defining the problem. However,
due to the limitations in our experimental platform, the peg can
only be pushed with a single DTP in one direction along the
axis. Thus, in the experiments, we choose the initial posi-
tion of the peg to ensure that a single DTP is able to complete
the task. Note: obstacles in the environment are currently being
ignored. For such a task, the planning algorithm relies on com-
posing the simple robust motions defined above. The following
three higher level robust motion primitives are first constructed
using these simple ones.
1) Robust Translation in the -Direction: This robust trans-

lation is achieved by using the DTP to push the part in the -di-
rection, while maintaining two-point sticking contact. However,
because the two tips of a DTP may not be aligned (see in
Fig. 10 bottom) or sensing errors exist, two-point contact might
not be established, or can only be established after the one-point
contact is established first at either the top or the bottom tip.
To increase robustness, a to-two-contact property is defined, de-
noted as , by a sequential composition of a one-point sticking
contact motion with a counter clockwise rotation followed by a
two-point sticking contact motion (see Fig. 12). Lemmas 1 and
2, respectively, provide conditions for one-point and two-point
sticking contact motions. The following lemma will ensure that
two sticking motions can be combined to ensure a motion.
Lemma 3: Assume that the top tip first establishes the contact.

When the misalignment parameter, , of the DTP satisfies

(12)

Fig. 12. The motion starting from the right figure to the left.

Fig. 13. Vertical translational motion starting from the right figure to the left.

the counterclockwise rotation with one-point sticking contact
can be followed by a two-point sticking motion. Note: defini-
tions for the geometrical parameters in (12) are found in Fig. 10
(bottom); between the probe and
part, while and are components of the damping matrix, as
described in Section IX-B.

Proof: The first inequality in (12) ensures that two-point
sticking contact is admissible and can be established before the
one-point sticking contact motion stops. The second inequality
ensures that a counter clockwise rotation with one-point sticking
contact will precede the two-point sticking contact motion.
2) Robust Translation in the -Direction: This translation

is achieved by composing a robust motion with one point
sticking contact and intended rotation followed by a robust
motion (see Fig. 13). The amount of the net vertical translation
is under nominal conditions (no uncertainty).
3) Robust Rotation: This motion is achieved with the

pushing described in Section IX-C3.

Planning algorithm

Utilizing these three higher level robust motion primitives, the
planning algorithm consists of the following steps:
Step 1) Move in the direction by pushing along the long

edge of the part such that .
A sequence of -direction motions is used,
guaranteeing that the net translation of

will result (Fig. 13). It will have the
following error bound , in which

,
, , and are,

respectively, the sensing and control error bounds
in the position, and is the sensing error bound in
the orientation. To ensure that
can be achieved using the vertical primitive
under sensing and control uncertainties, the
following conditions on the uncertainty bounds
must be satisfied: , ,

.
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Step 2) Rotate to . As shown in (11) and Fig. 11
(left), the distance of the orientation of the part
to the horizontal line will be bounded. To ensure
that the final pushing can be robustly applied, it
is required that uncertainty bounds satisfy:

,
in which is the maximal orientation of the
part allowing a robust pushing.

Step 3) If necessary, move in the direction by pushing
along the short edge of the part such that

.
Step 4) Translate the part in direction to the

goal (0, 0). With the robust motion
primitives, the final configuration of part will be

,
,

and in which is the position of
the top tip of the DTP, , and are as
shown in Fig. 10 (bottom). These equations
also impose restrictions on the uncertainty
bounds to ensure the intended tolerance:

and , in
which , ,
and is the maximal magnitude for .

X. SIMULATION AND EXPERIMENTAL RESULTS

A. Estimating of System Parameters

The parameter fitting was done with the experimental data
obtained using the STP in a similar manner as before. The di-
agonal elements of damping matrix are estimated to be

and . The coef-
ficient of friction between the part and the probe is estimated to
be . Results show position errors
across a translation of about 600 and about 3 orientation
errors for a 45 rotation.
It should be noted that the model is fit once for each part/sub-

strate set. With our approach, the same model can be used with
parts that have the same nominal geometry on the same sub-
strate. If the nominal part geometry or substrate changes, then
a new model should be fit. Although not in the scope of this
work, this model fitting procedure can be automated to limit the
overhead associated with this. For example, once a new part
is identified (or new substrate installed) a series of free rota-
tion pushes on the part can be automatically administered, tra-
jectories recorded, and model parameters fit for this particular
scenario.

B. Comparison Between Robust and Nonrobust Motions

Trajectories from robust motion primitives show less varia-
tion (and are therefore more predictable) than trajectories from
other motion primitives. Fig. 14 shows the experiment setup
(top) and experimental trajectory plots for comparison of the
robust and nonrobust motions using the DTP and STP. Tests 1
and 2 are for robust and nonrobust motions with the DTP.
Test 1 was verified to satisfy the robust motion conditions for
One-point sticking contact with CCW rotation and Two-point

Fig. 14. Experimental results for robust and nonrobust motions with the DTP
and the STP.

TABLE III
Y-TRANSLATION PRIMITIVE: NET DISPLACEMENT OF THE PART

sticking contact. The experiments showed that the two-point
contact is well maintained because the orientation (bottom
plot) is almost constant after the two point contact is established.
Test 2 did not satisfy the two-point sticking contact conditions,
and therefore the two-point contact was broken once it was es-
tablished (nonconstant, decreasing ). It was also observed that
Test 1 has maximal trajectory differences of 20 in , 15
in , and 0.023 radians in , which are smaller than the corre-
sponding numbers for Test 2 (maximal trajectory differences at
15 in , 25 in , and 0.1 radians in ). Test 3 shows
results for the robust CCW rotation with one-point sticking con-
tact primitive using the STP.

C. Planning in Both the Simulation and Experiment

Table III shows the comparison between theoretical, simu-
lated and experimental results for robust translation in the -di-
rection primitive. Tables IV and V compare the experimental
and simulated results for executing robust rotational motion and
robust translation in the -direction motion, respectively. At
least three experimental tests were done for each motion type
and the average values of the tests are shown in the tables.
For the robust translation tests, the initial robust one-point

sticking contact is maintained until a desired part rotation angle,
, is achieved. This is then followed by a robust push to re-
store the part to the upright position. Simulation and theoretical
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TABLE IV
ROTATIONAL MOTION: NET DISPLACEMENT OF THE PART

TABLE V
-TRANSLATION PRIMITIVE: NET DISPLACEMENT OF THE PART

results match very well for the values tested (Table III). Ex-
periments show a somewhat higher (7–9 ) net displacement
than the predicted translation, but it is likely due to measure-
ment errors—errors in estimating position are . Sliding
was not observed in the pushing from the image analysis. This
-motion is obviously coupled with -direction motion of the

part. There are no theoretical predictions for this motion since
our primitives only guarantee that one or two-point sticking con-
tacts will occur and not precisely when they will occur. How-
ever, the average values for this -direction motion from the
experiments are comparable to those predicted in simulation.
In the robust rotational motion experiments, the separation

distance is determined from (10) and the STP and DTP are cen-
tered about the center of the part that has orientation . The
STP probe is to the left of the part and is held stationary. The
DTP, on the right side, pushes the part with its bottom probe tip
for a distance of about 1100 . From these experiments, one
can see that the orientation of the peg is robustly rotated close
to even though uncertainties can cause significant mismatches
in and displacements (Table IV).
A push of approximately 950 was used for the robust
translation experiments. The predicted results are within the

error margins of the experimental observations (Table V).
Combining these three types of robust motions together al-

lows for the execution of the planned algorithm described in
Section IX-E for the task shown in Fig. 11 (right). Because
of the limited controllability of the position of the peg in
the current experimental platform and planning algorithm, the
initial configuration is set to be

such that one robust motion followed
by one robust rotation followed by one robust motion is able
to push the peg into the hole. If the part -coordinate is not in
the neighborhood of the goal -coordinate after the robust ro-
tation primitive, the algorithm will call for and execute more
robust -moves until the part is in this neighborhood. Then, the
robust -motion will be performed to move the part into the
hole.
A simulation of the planned motion is shown in Fig. 15 (top).

In the experiments, the peg is successfully pushed into the hole

Fig. 15. Simulation (top) and experimental (bottom) results for a planning task.

Fig. 16. Snapshots illustrating the assembly of the part into the slot.

three times over three trials. The experimental data from one
trial is shown in Fig. 15 (bottom). The regions where the dif-
ferent robust motion primitives are being applied are labeled in
the figure. Finally, the snapshots of the experiment are shown in
Fig. 16 with the associated robust controls.

XI. FUTURE WORK

In our future work, we plan to extend the analysis presented
here in a more general setting. Robust controls can be derived
by analyzing the structure of the underlying LCP. In this sense,
one can define a set of controls to be robust if the LCP solutions
corresponding to these controls use the same complementarity
basis and therefore no transition (such as stick-slip, take off) oc-
curs during the time period for which the controls are applied.
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Possible changes of complementarity basis can be easily veri-
fied by simulation under some standard nondegeneracy assump-
tions. We also plan on addressing more complicated problems
associated with multipoint contacts, which characterize many
assembly tasks. Contacts between the fixed obstacles can be
treated the same as contacts with the stationary (passive) probe.
Primitives and/or fixtures can be developed to take advantage of
these contacts (i.e., self guiding fixtures) as was the case with
the RRT-based planner. For example, see Fig. 7 where the top
of the fixture is used to pivot the part around to change its ori-
entation and the slot aligns the peg as it is inserted into the hole.
Finally, we intend to extend this work to the microscale.

Our current model and motion primitives are derived at the
mesoscale and do not consider adhesion forces between the
support and part or manipulator tip and part that will be present
with microscale parts 100s of microns and below in size.
In order to extend this methodology to this scale, the model
and primitives must be modified to incorporate these effects.
Alternatively, or in conjunction with these changes, controlled
environmental conditions (low friction surfaces, clean-room,
humidity controlled environments, etc.) will be explored for
the experimental test-bed to mitigate against these microscale
sticking effects. Also, manipulations conducted with multiple
active DTP’s will be investigated to provide increased control-
lability to both the mesoscale and microscale parts. Using the
point contacts to manipulate the microscale parts will decrease
the amount of surface contacts on the part when compared to
microgrippers and thus reduce the chances of the encountering
stiction between the parts and probe tips.

XII. SUMMARY

In the first part of this paper, we addressed the modeling, sim-
ulation, and planning of a simple assembly task in which a peg
with a characteristic length of 1 mm is reoriented by pushing
with a probe and inserted into a hole. We relied on vision to es-
timate the initial configuration of the system rather than for feed-
back control. An RRT algorithm was used to produce feasible
open loop manipulation plans. While these plans were some-
times successful when carried out experimentally, they were not
robust to error associated with the uncertainty in the support
friction models or to those associated with the initial positioning
of the peg. An intuitive open loop motion plan was generated to
increase robustness and executed experimentally to successfully
accomplish the task.
In the second half of this paper, a framework for motion plan-

ning under differential constraints and uncertainties in sensing,
control (actuation), and geometric/dynamic parameters has been
established. Away to characterize robust motion primitives with
applications to quasi-static manipulation and assembly tasks is
shown and measures to quantify robustness of motion primi-
tives is proposed. Further, an algorithm to automatically synthe-
size quasi-open loop motion plans which sequentially compose
robust motion primitives to move parts to goal positions with
minimal actuation is described.
The main contribution of this new framework is the quanti-

tative treatment of uncertainty and the incorporation of models
of uncertainty into the synthesis of motion primitives and the
motion plans. It does not address the problems associated with

multipoint contact which characterize assembly tasks. Themod-
eling of the contact friction has been simplified by considering
lubricated surfaces which appear to be well modeled by vis-
cous damping. Nevertheless, the ability to plan and reliably
execute the plan for positioning and orienting parts using vi-
sual feedback with only a single degree-of-freedom actuator
represents a significant accomplishment over previous studies
on quasi-static manipulation. These methods can be generally
applied to more complicated meso-manipulation and assembly
problems and be extended to the microscale with the addition
of adhesion force modeling.
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