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Abstract— Flexible automation technologies have been ap-
plied to the manual phototransfection procedure on fibroblast
and astrocyte cells. We have designed and implemented a frame-
work for increased throughput of the entire process. Integrated
image processing, laser target position calculation, and stage
movements show a throughput increase of > 23X over the
current manual method while the potential for even greater
throughput improvements (> 110X) is described. A software
tool for automated single cell morphological measurements has
also been constructed and shown to be able quantify changes in
the cell before and after the process, successfully characterizing
them, using metrics such as cell perimeter, area, major and
minor axis length, and eccentricity values.

I. INTRODUCTION
There has been much research performed on stem cells in

recent years [2], [12], [17]. This research is popular since
these cells contain a blue-print of how to build everything in
your body, as they are naturally produced during embryonic
development. However, with the possibility of using stem
cells in cell replacement therapies for various illnesses a
more ready and less controversial source of stem cells has
been sought. One approach is to create them artificially. This
can be done by using viruses to deliver a set of transcription
factor cDNAs into mature cells that will then dedifferentiate
these cells into an induced-pluripotent stem cell (iPS) [16].
Signals can then be sent to this iPS cell to lead it down
a desired developmental pathway to create specified cell
types. This procedure is shown schematically in Figure 1(a).
Creating therapeutically relevant cells in this manner suffers
from the difficulty in programming stem cells to become
a particular cell type. An alternative approach is the direct
reprogramming of one cell type into another cell type using
the Transcriptome Induced Phenotype Remodeling approach
(TIPeR) [15] whereby populations of RNA are introduced
into a host cell in an effort to reprogram that host cell. It
attempts to wipe out the current instruction set that is in place
in the host cell and replace it with another. A key feature of
the TIPeR procedure is introducing the RNA population into
the host cell. One method for performing TIPeR is through
the use of phototransfection to transiently introduce holes
into the host cell through which mRNA populations can
diffuse. Once the holes reseal the introduced mRNA will be
translated and produce functional proteins that can modify
host cell phenotype. Phototransfection provides a means for
performing functional genomics manipulations on individual
cells. This process is pictured schematically in Figure 1(b).

The current, manual phototransfection procedure consists
of the following steps:
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Fig. 1. Artificial stem cell creation vs. phototransfection

• Locate cells of interest on a marked cover-slip and
record their locations on paper with same markings

• Identify the cytosol and edges of the cell of interest
• Define a region to apply a laser to poke a hole in the cell

membrane, considering that firing the laser on dendrite
(arm) portion of the cell or on the cytosol region of the
cell will damage it.

• Locally apply mRNA of a donor cell to the target cell
using pipette

• Observe cell changes at various time intervals (hours,
days, weeks)

This process is very tedious the overall yield rate is 70-
80%, meaning that the cells survive the process not that they
are necessarily changing from one type of cell to another. The
throughput is 20 cells/hour. The goal here is to apply flexible
automation techniques in order to increase the throughput to
about 360 cells/hour. This is important in order to rapidly
explore many different amounts and types of donor mRNAs,
perform various functional tests to see what genes have been
expressed and to fill out microarrays for data analysis and
fine tuning of the overall procedure. It is also desired to
be able to quantify the cell morphology for comparisons
before/after the process to use as one measure to verify that
the cell is indeed changing from one type of cell to the other.

There is some related work on automated systems to
improve the efficiency, productivity, quality, and reliability
for procedures and processes in the life sciences. Applying
microrobotic and flexible automation technologies to mi-
cromanipulation tasks such as single cell holding, moving,
injecting/ejecting materials in/out of cells is becoming an ac-
tive research area [7], [21]. These types of cell manipulation
tasks are important for the characterization and manipulation



of single embryo cells in applications such as cloning, gene
expression analysis, cell replacement therapy [14], intracy-
toplasmic sperm injection (ICSI) and embryo pronuclei DNA
injection. Much work has been done on creating automated
systems to increase the survival and success rates of these
types of procedures [8], [10], [19], [20].

Various types of platforms for laboratory automation have
also been presented. Choi et al. [6] present a robotic plat-
form for clinical tests suitable for small or medium sized
laboratories using mobile robots. A “tower-based configura-
tion” for the automatic execution of various biotechnology
(genomics and proteomics) protocols is presented in [13].
Studies to identify current and future approaches to the
design of highly automated systems for life science processes
involving humans in control loops in applications such as
high-throughput compound screening and high-performance
analytical chemistry, adherent cell culturing, and the cultiva-
tion of primary and stem cells have been explored in [9] and
[11], respectively.

The work presented this paper describes automation for the
life science application of phototransfection of single cells.
A software analysis tool for automating cell morphological
measurements for quantitative comparison of images of the
cells before and after the process is described first. This is
followed by a description of the framework for automating
the current manual phototransfection process along with
proof-of-concept implementation results. Finally, recommen-
dations for further improvements are provided.

II. AUTOMATED CELL MORPHOLOGY
MEASUREMENTS

Images of the phototransfected cell are observed and
recorded before and after the process, at different time
intervals, to assess morphological changes in the cell. Cell
characterization with morphological measures is one way
that biologists can assess the success of the overall procedure,
along with other functional tests. However, this is not an
easy task. The problem in comparing two different images
of the same cell before and after phototransfection is that
the changes in the cell are hard to discern because of
changes in illumination, camera viewpoint and background
in both images. Image segmentation techniques, borrowed
from the computer vision literature, are used here to segment
the image of the cell from the background in order to
compare both images of the cell before and after the process
without ambiguities. From a properly segmented image, the
morphology is quantified by computing measures such as
cell area, perimeter, major axis length, minor axis length,
and eccentricity.

Initially, images of the cells were segmented using graph-
theoretic clustering techniques, using the image pixels as
nodes in the graph [1]. Once a connected, weighted graph is
constructed from the image of interest, a graph-cutting algo-
rithm can be executed in order to segment the image. Graph-
cutting techniques tackle the minimum cut problem: finding
a cut in the graph that has the minimum cost among all
the cuts. The algorithm from Boykov and Kolmogorov [3],
that is used here, solves this problem problem by finding
the maximum flow from the “Source” nodes to the “Sink”
nodes in the graph. The output of the algorithm is a label for
each node in the graph (pixel in the image) assigned to be
either the “Sink” or “Source”. For this application, the “Sink”
corresponds to pixels in the background of the image while
the “Source” corresponds to pixels belonging to the cell.
Edge weights between the nodes in the graph are computed

using a weighted sum of distance (Ad), pixel intensity (Ai),
and texture (At) affinity measures for particular nodes. The
affinity measures between two nodes, N1 and N2, are listed
in (1)-(3), while the corresponding edge weight, E, is given
in (4)

AdN1,N2 = exp{−(PN1 − PN2)2/(2σ2
d)} (1)

AiN1,N2 = exp{−(IN1 − IN2)2/(2σ2
i )} (2)

AtN1,N2 = exp{−(TN1 − TN2)2/(2σ2
t )} (3)

EN1,N2 = w1Ad + w2Ai + w3At (4)

where PN = position of node N, IN = pixel intensity value
of node N, TN = average change in pixel value intensity
between pixels in a image patch surrounding node N, and
the σ parameters are chosen to yield large affinity values for
similar pixels while yielding low affinity values for dissimilar
pixels. The weights, w1, w2, and w3, are user defined and
each are ≤ 1 while their sum = 1.

Edge weights between the nodes in the graph and the
“Sink” and “Source” nodes also need to be computed to
complete the graph. Equations (5)-(11) are used for this.
Here AdBkg , AiBkg , and AtBkg are affinities associated with
the background (“Sink”) section of the image that are pre-
computed from a set of training images.

AdAve = (AdN1,N2 +AdN1,N3)/2 (5)
AiAve = (AiN1,N2 +AiN1,N3)/2 (6)
AtAve = (AtN1,N2 +AtN1,N3)/2 (7)
FN1 = AdAve +AiAve +AtAve (8)
FSink = AdBkg +AiBkg +AtBkg (9)

EN1,Sink = exp{−(FN1 − FSink)2/(2σ2
s)} (10)

EN1,Source = 1− EN1,Sink (11)

The raw output from the graph-cut algorithm needs to
be filtered in order to come up with the final segmented
image of the cell from the background. Image erosion
and dialation steps are applied in Matlabr and the largest
connected pixel region that is left is used as the segmented
cell image and statistics reported on it. Figure 2(a) shows
the result from this procedure on images of four fibroblast
cells before and after the phototransfection process, with the
segmented area overlayed on the original image. The images
in the top row are before the process while the bottom row
of images are after the process has been completed. The
cell perimeter, area, major and minor axis, and eccentricity
(in pixels) are calculated for each set of images and the
corresponding changes in these morphological measures re-
ported in the table below the images. These metrics show
substantial changes after the phototransfection process has
been performed. This indicates a successful phototransfection
since the fibroblasts now are starting to look like the donor
astrocyte cells and there are metrics to support this.

However, due to the inconsistencies in the lighting condi-
tions, cover-slip markings, and textures of the backgrounds
and cells in the images, consistent results for one set of
system parameters across all data sets are difficult to achieve.
Figure 2(b) shows examples of poor image segmentation,
when only a subset region of at the actual cell is iden-
tified, using the same set of system parameters as those
in Figure 2(a). Continuous tuning of the graph parameters
can be performed to obtain acceptable results, however it
is desired to keep these details transparent to the end-user
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Fig. 2. Results for morphological measures from graph-cuts method

and instructions how to and what to change are not trivial.
Therefore, a stand-alone, more user-friendly Matlabr-based
software tool has been developed.

This software tool has been specifically designed and
implemented for assessing morphological measures in the
astrocyte and fibroblast cells before and after the phototrans-
fection process. A screen shot of the AutoPT Cell Morphol-
ogy (CM) Graphical User Interface (GUI) that operates the
program is shown in Figure 3(a). It has been set up for
individual image processing as well as the bulk processing
of many images. Once the image to be analyzed has been
loaded, the user can then choose from a number of different
processing options in the Manual Processing Tools panel to
apply to the image. These include: equalizing the image (i.e.
evenly distributing intensity values throughout the range of
intensity values in the image), image darkening/brightening,
edge detection, image closing, connected pixel filtering (fil-
tering out connected pixels smaller than specified size), and
filling image holes. There is a choice of five common edge
detection methods to apply that are all part of Matlabr’s
Image Processing Toolbox. The processing can be done
in any order, however, typically the order that the tools
appear in the Manual Processing Tools panel is the order
that they are executed. Figure 3(b) shows an original image
and subsequently processed images after application of the
manual processing tools in this order. There is also an option
to manually select pixels in the processed image to either
connect or disconnect them from the processed image. Once
the image is properly segmented, the cell statistics for the
largest connected pixel region are calculated and displayed
in the CM GUI. These statistics include the perimeter, area,
major axis length, minor axis length, eccentricity, equivalent

(a)

(b)

Fig. 3. Image processing GUI and typical processing steps for segmentation

diameter, solidity, and extent. The original image of the cell
is then overlayed with the segmented image of the cell in
both main GUI panel and in a separate window. A new image
just of the segmented cell is also generated. The Record
Statistics button can then be used to write this data to a text
file and save the original cell image, segmented cell image,
and overlay image of the cell in jpg format. The data file
written also contains hyperlinks to these saved images.

Once suitable manual processing steps and parameters
have been determined for a few test images, bulk processing
of all the images in the active directory can be performed
with these settings. Inside the Automatic Processing Se-
quencer panel, the process to be performed and sequence
number can be selected and inputted. The processing steps
will use the parameters set in Manual Processing Tools panel
and execute the processing on all the images in the active
directory, write the corresponding statistics to a text file, and
record the original, cell, and overly images, as shown in
Figure 4. There are also settings to record just the largest
region, three largest, or all the connected pixel regions that
are found.

Three image sets, each containing 5 pairs of images corre-
sponding to the same cell before and after the phototransfec-



Fig. 4. Cell morphology bulk process image output
TABLE I

MANUAL PROCESSING AREA AND PROCESSING TIME COMPARISON

Image Pair % Area Change1 % Area Change2

1-1 0 -6
1-2 -47 -47
1-3 -71 -74
1-4 -90 -87
1-5 -83 -75

Manual Processing Time 16 min 24 min
2-1 -81 -81
2-2 -94 -93
2-3 -95 -94
2-4 -93 -92
2-5 -89 -87

Manual Processing Time 20 min 20 min
3-1 -65 -68
3-2 -74 -75
3-3 -89 -89
3-4 -82 -78
3-5 -81 -79

Manual Processing Time 16 min 26 min
% Area Change1: using data from AutoPT Cell Morph GUI analysis

% Area Change2: using data from Traditional analysis

tion process, were used to compare the performance of this
software tool to acquire morphological cell measurements
against the traditional method. In the traditional method, the
user first traces the cell border in one particular program.
This is followed by importing this new cell boundary image
to another program to fill in the region inside the cell border.
This filled cell image is then imported back into the original
program to measure the area of cell. The processing time
to analyze each image set using this technique along with
the percentage change in the area metric for each image pair
were recorded and are listed in Table I (column 3). The same
image sets were analyzed manually using the AutoPT CM
GUI (Figure 3(a)) and the processing time for each set along
with the percentage area change for each image pair recorded
and also shown in Table I (column 2). In the case of image
sets 1 and 3, the processing time using the AutoPT CM
GUI tool is 33% and 38% faster than the traditional method,
respectively. The processing time for image set 2 was about
the same in both methods. The results for the percentage
change in the area metric with the CM GUI program are
all within 8% of the results produced with the traditional
analysis method. This error is small and can be explained
from the fact that the same person did not use both methods
(one person used traditional methods while the other used
the GUI) and some portions of the cell borders are subject to
individual interpretation. It is also expected that more time
gains will be realized once the user is more experienced
with using the GUI and identifies the best combination of
processing controls to segment particular types of images
(this is the reason for similar processing times in image set
2). The CM GUI program is also more user-friendly and
efficient since all the necessary processing steps are self-
contained and there is no need to switch back and forth
between different programs to perform the analysis. Further,
using the CM GUI provides more than 6X the information

TABLE II
MORPHOLOGICAL CHANGES - % CHANGE FROM ORIGINAL

Image Pair Perimeter Area Major Axis Minor Axis Eccentricity Equiv. Dia
1-1 21 0 6 3 4 0
1-2 -16 -47 -24 -36 2 -27
1-3 -47 -71 -43 -49 49 -46
1-4 -81 -90 -83 -58 -47 -69
1-5 -77 -83 -78 -52 -24 -59
2-1 -53 -81 -74 -33 -7 -57
2-2 -82 -94 -81 -71 -16 -76
2-3 -88 -95 -88 -79 -37 -77
2-4 -83 -93 -87 -60 -46 -74
2-5 -79 -89 -84 -42 -76 -67
3-1 -33 -65 -34 -40 5 -41
3-2 -8 -74 2 -43 18 -49
3-3 -80 -89 -83 -43 -41 -67
3-4 -71 -82 -62 -60 -4 -58
3-5 -61 -81 -35 -71 324 -56

than the alternate approach. As stated previously, in addition
to the cell area metric, the GUI program yields metrics
for the cell perimeter, major axis length, minor axis length,
eccentricity, equivalent diameter, and others. This data for the
three sets of test images is shown in Table II. For the metrics
listed here, they are all substantially decreased (by an average
of 58%) after the phototransfection process. The traditional
analysis method cannot provide these extra morphological
measurements.

The Bulk Process function in the AutoPT Morphology
GUI was also used to process the three sets of test images.
Depending on the processing parameters selected, the pro-
cessing time to analyze the set ranged from 4.5 to over 40
minutes (using a laptop running Windows XP, with 1.80 GHz
Pentium M processor and 1 GB RAM). In each case, data
for every connected pixel region greater than 500 pixels was
recorded, which depending on the settings can result in a lot
of extra processing time. Due to the inconsistencies in the
images (lighting conditions, focal length, pipette placement,
etc.) it was hard to identify one set of image parameters
to successfully segment each cell image. In the best cases,
a particular processing parameter set was able to segment
about 60% of the images in the set within an acceptable
tolerance. Another set of parameters was then selected to
try and process the rest of the images. This is then repeated
until all the images in the set have acceptable results or the
remaining images can just be processed manually. Procedures
can be put in place to standardize the image capture settings
during the process and produce more consistencies among all
the images in an image set that will increase the efficiency
and results of the bulk processing of the images. This is a
topic of future work.

III. FRAMEWORK FOR PROCESS AUTOMATION

A framework to automate the actual single cell photo-
tranfection process has been developed. The first step in
automating the phototransfection process is to instrument
a microscope with a motorized stage for closed loop po-
sitioning of the cover-slips under the microscope field of
view (FOV). Once this is done, a global and local map of
each cover-slip can be constructed, as seen in Figure 5. The
stage can be indexed and sequential image captures of FOV’s
in specific locations on the cover-slip performed. A mosaic
of all these images can be used to build the global map.
This map of the entire cover-slip can then be stored for
comparison and analysis at different time intervals. Local
maps for individual FOV’s of the cover-slip can also be
created, where image processing will be performed.
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Fig. 5. Automating the phototransfection process

Fig. 6. AutoPT: Hardware Setup

In the individual FOV’s, standard computer vision tech-
niques, such as edge detection, image erosion, dilation,
filtering, filling [18], can be used to segment the cell body
and dendrite area from the background in each image. Local
and global image data can then be compiled consisting of cell
body coordinates locations, sizes, contour profile statistics,
and dendrite section areas and locations. A program can
be written to automatically determine suggested laser target
firing locations based on image data for each FOV on the
cover-slip. These locations will be high curvature regions
on the cell body, away from the dendrites and cytosol of the
cell. Once all locations are set, coordinated micromanipulator
positioning of the injection pipette, laser firing, mRNA
release, and stage positioning can be executed across entire
global map of the cover-slip all at once, greatly increasing
throughput.

A. AutoPT: Proof-Of-Concept Implementation
A proof-of-concept implementation for automating this

phototransfection process has been accomplished using the
flexible automation micro/meso-scale manipulation system
from [4], [5]. The system setup can be seen in Figure 6.
Here, an inverted optical microscope, motorized XY stage,
and CCD camera are the pertinent pieces of hardware being
utilized. Typically, a 40X objective is used to image the cells
for this application. The computer controlled micromanipu-
lator can be used to position a pipette for dispensing mRNA
and in the future, a laser will be incorporated into the system
and focused to fire at the center of the image in the FOV.

The control software to operate the system is written in
Visual C#.Net, leveraging the Windows .NET framework,
enabling easy integration of software modules that can reside
on different workstations. The software includes (a) real-

Fig. 7. AutoPT: Software GUI

time image capture of images from the microscope; (b)
control of the motorized stages; and (c) a simple GUI for
the operator to specify the type of cell he/she is interested
in by inputting relevant image processing parameters (see
Figure 7). The image processing routines are written in
Matlabr (version 7.2.0.232, R2006a) using functions from
the Image Processing Toolbox.

Using the Laser Target Control Panel found in the lower
left corner of the GUI, the user specifies the parameters
for the image processing code in Matlabr. Parameters that
are set include the type of edge detection method to use
(Canny, Sobel, Roberts, Prewitt, Laplacian), the diameter for
the image closing operation, and pixel size for a connected
pixel filtering procedure. Note that these parameters are set
once. Once these values are set, the user can then click the
Get Target button to calculate a recommended laser target
firing location of the cell of interest in the FOV. This button
saves the image from the current image frame along with the
specified parameters and then calls Matlabr to perform the
necessary calculations to segment the image of the cell from
the background and recommend image coordinates to fire
the laser. In this current implementation, this position is just
determined as the centroid of the cell body. However, more
sophisticated metrics to calculate the laser target position
can easily be applied here instead. The laser target position
information is then sent back to the main control program
and drawn on the screen in blue. Once this position is verified
as being accurate, the user can then click the Position Target
button and the motorized stage will then translate the cell in
the XY plane so that the laser target position calculated is
now at the center of the image where the laser is parked. By
coupling the Get Target and the Position Target function with
the laser firing and mRNA release from a pipette mounted
on the motorized manipulator in the system, the system will
be completely automated. Once finished, the Clear Target
button can be used to reset the laser target position in the
computer memory and move the stage back to it’s original
position.

B. Estimated Throughput
On a single control computer running Windows XP, with

a 2.39 GHz Pentium 4 processor and 1 GB of RAM, it
takes 30 seconds to segment and identify a target location for
the cell and translate the XY stage so that the laser can be
used at the target location. This corresponds to a throughput
of 120 cells/hour, which is a 6X improvement over the
current manual procedure (20 cells/hour). By coupling all
the software modules more efficiently (eliminating the C#
wrappers with Matlab software) and by processing all cells



in the field of view (typically 4-6), the throughput is expected
to increase to over 500 cells/hour. This is greater than an
25X improvement. Also, using a newer, faster computer
would further decrease the cycle time. This system can also
be run continuously, only needing a human to be there to
replenish a new batch of cells and remove the processed
ones. Assuming a 12-hour day at a rate of 500 cells/hour
projects to a throughput of 6000 cells/12-hr day.

As proof-of-concept for the increased time gains from
using one integrated program, the C# program functionality
was converted to a Matlabr program capable of acquiring
images from the CCD camera, processing the image, cal-
culating laser target positions, and moving the XY stage.
Running everything in the same program reduced the process
time to about 8 seconds from 30 seconds. This corresponds
to a throughput of 450 cells/hour, a 23X improvement from
the current manual process. Again, assuming that all the cells
(typically 4-6) in the FOV can be processed with minimal
increased computational overhead, a potential throughput
of 2250 cells/hour (113X improvement) is estimated. In
practice, this fully integrated program can not be written in
Matlabr since the images from the confocal microscope,
that is used for the actual procedure, are captured with a
photomultiplier tube (PMT). The PMT is not compatible
with Matlab’s image acquisition toolbox which has been used
here to capture images from the CCD camera in the test
setup. Therefore, custom software is required to capture the
PMT images, perform the appropriate image segmentation,
calculate laser target positions, and translate the XY stage in
order to achieve these further throughput gains.

To get the maximum possible throughput out of the
entire system, considerations for automatically refilling the
micropipette with mRNA should be made along with inves-
tigations on how to move the processed cover-slip out of the
way, store it in an organized manner while feeding in the
next one to be processed, with as limited human interactions
as possible.

IV. SUMMARY

Work on applying flexible automation technologies to
the single cell manipulation process of phototransfection
is presented in this paper. Phototransfection is presently
done manually in a very tedious manner. A framework
for fully automating this procedure has been designed and
proof-of-concept implementation achieved. Computer vision
techniques are used to identify the cell of interest in the
FOV and determine target locations for the laser beam.
A control program takes this information and coordinates
movements of the computer controlled XY stage, translating
the coordinates of the laser target location to a predefined,
fixed, laser firing location. A 23X improvement is possible
with this implementation with room for improvement to
greater than 110X described.

Images of the phototransfected cell have been observed
before and after the process and a software tool developed to
assess morphological changes in the cell as a way to charac-
terize them and assess the efficacy of the phototransfection
process. Image segmentation algorithms were used to seg-
ment the cell from the background in order to compare both
images of the cell without ambiguities. From the properly
segmented image, the morphology is quantified by comput-
ing measures such as cell area, asymmetry, perimeter, and
eccentricity. Results show a notable decrease in the metrics
after the process has been performed, a throughput increase
over manual cell morphology measurements, a 6X gain in

the number of measurements made, and a more efficient and
user-friendly software tool for cell morphological analysis
produced.
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