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ABSTRACT
While robotic assembly at the centimeter and meter length

scale is well understood and is routine in the manufacturing in-
dustry, robotic grasping and manipulation for meso-scale assem-
bly at the millimeter and sub-millimeter length scales are much
more difficult. This paper explores an possible way to manipu-
late and assemble planar parts using a micro-manipulator with
a single probe capable of pushing parts on a planar surface with
visual feedback. Specifically, we describe a study of the uncer-
tainty associated with planar surface friction with a goal of de-
veloping a model of manipulation primitives that can be used for
assembly. We describe a series of experiments and data analysis
algorithms that allow us to identify the main system parameters
for quasi-static operation, including the friction coefficient and
the force distribution, while characterizing the uncertainty asso-
ciated with these parameters. This allows us to bound the range
of motions resulting from the uncertainty, which is necessary to
design robust open-loop meso-scale manipulation and assembly
motion plans.

INTRODUCTION
While there are many examples of miniaturized products

that are produced using highly automated processes, most of
these processes involve hard automation or the use of specialized

∗Address all correspondence to this author.

equipment for assembly. In contrast to macro-scale assembly
which is now performed using general purpose robots for many
products, it is much more difficult to design general purpose ma-
nipulation or assembly processes for micro-scale parts. There
are several reasons for this. Inexpensive and reliable sensors are
non-existent at this scale. It is difficult to measure forces at the
micro-netwon level using off-the-shelf force sensors and good
force-feedback control schemes have not proved successful. It is
hard to manufacture general-purpose end effectors at this scale
and it is even more difficult to grasp and manipulate parts at the
micro and meso level than it is at the macro level. Finally, the
lack of good models of the mechanics of contact interactions at
this scale means that model-based approaches to control of micro
and meso manipulation are difficult.

The problem of designing open-loop plans for simple end ef-
fectors using manipulation primitives that do not require precise
real-time feedback to accomplish planar manipulation tasks has
been investigated before [1–3]. In [4], we investigated a meso-
scale assembly task, as shown in Figure 1. It involves planar
movement and reoriention of a 1600× 850µm part (peg) from
an initial configuration (A) to a final configuration (B) through
a 1000µm wide channel. We designed and experimentally veri-
fied open-loop plans for a simple four degree-of-freedom micro-
manipulator with a probe to manipulate planar parts on an in-
verted microscope. We found that these manipulation plans were
not robust to errors resulting from the uncertainty in the model.
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This uncertainty came from three sources: (a) the force distribu-
tion or the pressure distribution across the contact between parts
and the surface they rest on; (b) the coefficient of friction be-
tween the part and the contacting surface; and (c) the coefficient
of friction between the probe and the manipulated part. While it
is possible to measure these parameters in a laboratory setting,
it is difficult to directly measure these parameters just before or
while performing the task.

Figure 1. Typical meso-scale assembly task: Move part from configura-

tion A to configuration B.

This paper explores a methodology for experimentally char-
acterizing this uncertainty associated with these three sets of pa-
rameters without directly measuring these parameters and with-
out any special sensors. We describe a series of experiments
and data analysis algorithms designed to experimentally identify
these system parameters, with the goal of using these parameters
and an estimate of the underlying uncertainty for manipulation
and assembly.

RELATED WORK
Gripping and manipulation techniques for micro-assembly

applications is an active area of research [5]. Specifically, there
is a body of work pertaining to pick-and-plance micro-assembly
tasks using micro-gripping techniques and strategies [6–11]. Our
focus is rather on micro-scale pushing operations, which are bet-
ter suited for open-loop manipulations.

The derivation of the fundamental mechanics of pushing op-
erations and sliding objects have been extensively studied by
[12–14]. There is also extensive work addressing the analysis
and simulation of mechanical systems with frictional contacts.
In particular, semi-implicit and instantaneous-time models for
predicting motion and contact forces for quasi-static multi-rigid-
body systems have recently been developed [15,16].

Pushing operations and the instantaneous motions of a slid-
ing object during multiple contact pushing is examined and the
manipulation primitive of stable rotational pushing is defined
in [17]. In [18], the bounds of the possible motions of a pushed
object are investigated. [19] presents a comparison between the
dynamic and quasi-static motions of a push object.

The problem of planning pushing paths using stable pushes
is discussed in [20]. A pushing control system with visual feed-
back for open-loop pushing is described in [21] as a way to
mitigate the instability of pushing with point contacts. Open-
loop motion strategies, without the use of sensors, can be used
to eliminate uncertainty and to orient polygonal parts [1, 2, 22].
In [1], planar parts are considered polygons if their convex hull
is a polygon. Given a list ofn vertices describing the polygonal
part with an unknown initial orientation, the shortest sequence of
mechanical parallel-jaw gripper actions that will guarantee the
orientation of the part up to symmetry is determined. In [2], a
randomly oriented planar object is dropped into a tray. Then,
using the mechanics of sliding, an automatic planner is created.
The planner finds a sequence of tilting operations to leave the
object’s orientation completely determined. In [22], the authors
study the problem of posing a planar part given initial and goal
poses. Specifically, they prove that a multiple push strategy al-
ways exists (in the absence of obstacles) and they develop a com-
plete, polynomial-time algorithm to design one possible plan.
Other motion planning techniques have been applied to planning
pushing paths with the presence of obstacles [23] as well as for
multiple manipulators and obstacles [24]. To remove the uncer-
tainty associated with robot pushing tasks, [25] establishes stable
orientation and positions by pushing objects with two-point fin-
gers.

For micro-scale manipulation, sticking effects due to Van
der Walls forces and static electricity make the manipulator
motions and part release more complicated [26, 27]. Micro-
manipulators also have limited degrees of freedom when com-
pared to manipulators at the macro-scale. These problems are
addressed in [3] with a parallel-jaw gripper and squeeze and roll
primitives to orient a randomly oriented polygonal part up to
180◦ symmetry without the use of sensors. However, in the case
of the meso-scale sized parts used here, these sticking effects are
not an issue since the characteristic dimensions are larger than
10µm [28].

Estimations of friction parameters for pushed objects to im-
prove the control of pushing has been investigated previously
on larger objects and with different strategies than the ones pre-
sented here. In [29], the support surface is approximated by a
discrete set of support points and experimental data is used to
validate this model. It leaves the open question of how the hy-
pothesized support points for an unknown object should be cho-
sen. Similarly in [30], a method for estimating the friction dis-
tribution of an object and the center of friction from pushing the
object several times is presented. In both of these papers, a grid
system ofN possible support points is applied to the base of the
object being pushed. The respective algorithms determine the
distribution of the normal force of the object at these support lo-
cations.

Our goal in this paper is to characterize the uncertainty asso-
ciated with planar surface friction by performing friction parame-
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ter estimation. A series of experiments, data analysis algorithms,
and a quasi-static model of pushing are used to identify system
parameters, such as choice of friction coefficient and three-point
support location for a given set of manipulation tests. The uncer-
tainty associated with these parameters and the underlying model
are also explored by using these same techniques.

MANIPULATION TASK PLANNING
In this paper we address meso-scale manipulation assembly

using nonprehensile manipulation primitives. As mentioned ear-
lier, because of the lack of good grippers at the meso-scale, we
are interested in using a four degree-of-freedom micro manipu-
lator (two degrees of freedom in the plane) with a probe at the
end to manipulate parts using a single frictional point contact at
a time. In other words, the manipulator can only interact with the
parts through pushing operations. Because of the complexity due
to surface friction and intermittent frictional contacts between the
part, probe, and other fixtures involved in the assembly, there is
no analytical solution to the behavior of the system. However, it
is possible to simulate the system and analyze the planning and
control problem via simulation as in our previous work [4].

We also limit ourselves to open-loop manipulation using the
paradigm that is used in industrial automation. While vision and
other forms of sensing can be used for localization, placement
and planning, we only consider schemes that do not require real-
time feedback of position and/or forces.

Both these restrictions make the task complicated. We want
plans that are robust to uncertainty in initial positioning and the
dynamics. We also want to have sensors that limit the initial po-
sitioning errors and models that lend themselves to the analysis
of uncertainty of both task error (initial placement of parts) and
model error (estimation of parameters). It is important not only
to have accurate system parameter information but also impor-
tant to have error models for the system that can be used to plan
the manipulation task.

Manipulation Model
Due to the scale of the system and speed of manipulation,

we assume quasi-static dynamics. We use a semi-implicit time-
stepping scheme [16] that is specialized to a2.5Dproblem where
all parts and contact interactions are essentially planar and sur-
face friction in the plane is modeled with a simple force distribu-
tion. All contacts are assumed to behave according to Coulomb’s
friction model. The interaction between the part and the sup-
porting surface is modeled by three frictional point contacts as
in [12].

Using the above assumptions, the planar manipulation sys-
tem can be formulated as a mixed linear complementarity prob-
lem (MLCP) based on the following quasi-static equation of mo-

tion and time-stepping scheme for rigid bodies [4].

0 = Wnλl+1
n +Wf λl+1

f +Fext (1)

ql+1−ql = hG(q)νl+1 (2)

whereql ∈ R nq is the generalized configuration vector,νl+1 ∈
R nν is the generalized velocity vector,G(q) ∈ R nq×nν is the Ja-
cobian matrix ,Wn ∈ R nν×(nc+ns) contains the normal wrenches
for each of thenc + ns pushing (nc) and support (ns) contacts.
Wf ∈ R nν×(2nc+ndns) contains the frictional wrenches (with the
friction cone linearized intond directions for each surface con-
tact). The rigid body non-penetration constraint and linearized
Coulomb friction law then result in a set of complementarity con-
ditions.

The uncertainty in support pressure distribution and contin-
uous nature of the surface contact makes it difficult to model the
system. However, if we model the support by three frictional
point contacts, we can find the normal force distribution based
on a out-of-plane force balance, and use the maximum allowable
frictional forces resulting from these normal forces in our MLCP
formulation. For the purposes of simulation and modeling, the
manipulator can be considered an arbitrary convex polygon in
the plane with positionpm. Because of our choice to use a three-
point support approximating pressure distribution, the part can in
fact be any planar polygonal shape.

System Parameters
There are several parameters present in the simulation model

that affect the mechanics of the manipulation task and are un-
known. These are:
µs Coefficient of surface friction.
µt Coefficient of manipulator-part friction.
rs A 3×2 matrix specifying the support-point locations

The coefficients of frictionµs and µt are constrained to
the range[0.0,1.0]. Support-point locations must obviously lie
within the dimensions of the part being modeled. Additionally,
their convex hull must include the part’s center-of-mass so that
the appropriate normal force at each support point can be cal-
culated. The set of parameters is an 8-dimensional parameter
space. The goal is to find the point in the parameter space and
the neighborhood of the point that most closely characterize the
uncertainty.

EXPERIMENTAL SETUP
Micro-manipulation Test-bed

The experimental setup consists of an inverted opti-
cal microscope (Nikon Eclipse TEU2000-U), 4-axis micro-
manipulator (Siskiyou Design Instruments MX7600R), con-
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troller (Siskiyou Design Instruments MC2000), 25µm tip tung-
sten probe (needle), CCD camera (Sony XC-77), and control
computer (Figure 2). There is a 4X objective on the micro-
scope along with a 0.6X optical coupler producing a field of view
(FOV) of 3.37 mm x 2.52 mm. The CCD camera records the im-
ages in the FOV and sends them to the control computer at 30 Hz.
The micro-manipulator and controller allows incremental motion
as small as 0.1µm in 4 axes - X,Y,Z, and tool axes, respectively.
Each axis has a range of motion of 20 mm and can be actuated
with speeds ranging from 1.6µm/sec to 1.7 mm/sec. During the
experiments, the speed for each axis is fixed to 140µm/sec.

Figure 2. Experimental Setup

A fixture and part were made out of beryllium copper using a
photochemical machining (PCM) process (sometimes referred to
as chemical milling or chemical etching). This technique is use-
ful for manufacturing high-precision flat metal parts. A photo-
graphically prepared mask, generated from a simple CAD draw-
ing, is used to protect the metal that is to remain after the chem-
ical etching process, while the unwanted materials are etched
away [31]. The beryllium copper material, used for the fixture
and part, is 1.5 mil (0.0015”) thick.

The fixture has a rectangular section etched out of it that is
0.641”× 0.454” (1.63 mm× 1.15 mm). A polycarbonate film, 1
mil (0.01”) thick, is fastened to the bottom of the fixture to allow
for a transparent surface where the part sliding can reside. This
transparent quality is needed here since the light source for the
inverted microscope is projected up from underneath the fixture.
For traditional systems with a camera mounted opposite to the
light source, this transparent quality of the fixture backing is not
needed. The rectangular cut-out coupled with the polycarbonate
film backing provides an area where the characterization experi-
ments are performed.

Various size parts were manufactured through the PCM
process. The particular one used for the characterization tests is
0.064” x 0.033” (1621µm× 842µm) in size. During the chem-
ical etching process, a lead is attached to the part fixing it to the
sheet of beryllium copper so that it doesn’t wash away. When
the part is later removed from the sheet, a tab remains where the
lead was severed. This tab, 0.0068”× 0.0023” (173µm × 53

µm), is small in size when compared to the other dimensions of
the part. Figure 3 shows the part and probe in the FOV of the
microscope. Note that the probe is modeled as a polygon with a
25 µm side. During the experiments contact between the probe
and part occurs at one of the vertices on this side (point contact)
or with the side (line contact).

Due to the small size and mass of the part, the inertial forces
do not dominate during these planar pushing operations [27].
For our system, we have estimated the inertial forces to be on
the order of nano-newtons for the accelerations involved, while
the frictional forces are estimated to be on the order of micro-
newtons. Therefore, it is reasonable to assume the frictional
forces dominate and to adopt a quasi-static framework.

1612 um

842 um

895 um

173 um

Probe

Figure 3. Peg in microscope FOV

Image processing techniques are applied to the images from
the microscope to track the position of the part and probe during
each experiment. Thresholding is used to initially produce an
image where the part and probe pixels are black while everything
else is white. The image is then processed further by using the
geometry of the image to identify the pixels belonging to the
probe and removing them from the filtered image. During this
process, the coordinates of the tip of the probe are identified. An
ellipsoid is fitted to the resulting blob image yielding the centroid
and orientation of the part in each image frame.

Simulator
We have developed a software tool specifically designed

to provide a simulation environment well suited for design and
planning tasks that require accuracy and flexibility [32]. It em-
ploys a plug-in architecture so that modules can be substituted
for a variety of motion models (first-order, quasi-static, dynamic)
and time-stepping methods. Most importantly, it provides for
rapid development of design optimization or motion planning al-
gorithms while providing the ability to easily choose the appro-
priate dynamic modeling for a given application.
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Figure 4. Nominal initial conditions of part for manipulation tests.

Figure 5. Starting configurations of probe for manipulation tests.

SYSTEM IDENTIFICATION
Design of Experiments

Eight sets of manipulation tests were used to identify
and characterize the parameters in the 8-dimensional parameter
space. Manipulation tests consisted of horizontal moves with
contact between the probe and the part over distances of approx-
imately 700µm, executed on both the long and short side of the
part. Figure 4 shows schematics of the part in its nominal initial
conditions for each set of tests. The coordinate system is chosen
to align it with that of the images obtained from the vision sys-
tem. Pushes were made on the long side of the part at 5 nominal
positions - at the midpoint of the side (Figure 4, pt.C), midpoint
+ l ls/4 (pt.B), midpoint -l ls/4 (pt.D), midpoint +l ls/2 (pt.A),
and midpoint -l ls/2 (pt.E), wherel ls corresponds to the length
of the long side of the part. For these pushes, the part was nomi-
nally placed at angle of 90◦. The short side pushes were located
at 3 nominal positions - at the midpoint (pt.G), midpoint +lss/2
(pt.F), and midpoint -lss/2 (pt.H), wherelss corresponds to the
length of the short side of the part. These pushes start with the
part nominally placed at angle of 180◦. Each of the starting con-
figurations for the probe in each of the eight manipulation tests
are shown in Figure 5. A minimum of three trials for each ma-
nipulation test were executed.

Estimation Algorithm
Given experimental data consisting of trajectories for each

of the manipulation test experiments described above, what is the
parameter vectorp, consisting ofµs, µt , andrs, that best explains

the experimental data? Our estimation algorithm estimates pa-
rameters such that the simulated manipulation test results match
the experimental results from the execution of real manipulation
tests as well as possible. Because the manipulated part’s motion
is a non-convex and non-smooth function of the system parame-
ters, we cannot use gradient methods for optimization. This lim-
its us to optimization algorithms that rely only on the evaluation
of an objective function at different points.

The objective function we are interested in minimizing is re-
lated to the fitting of simulation to experiments over several trial
test manipulation runs. For each trial,xi , and a given parameter
vector,p, we compute the simulated motion,si , and compute the
root-mean-squared error along each axesx, y, θ (with θ scaled
by the characteristic length of the part to normalize). This cre-
ates a three dimensional error vector that we take theL∞-norm
of to get a quality measure for a single trial-simulation fit. When
fitting across several experimental trials, the total objective be-
comes the average of quality measures across all trials.

f (xi ,p) =

∣∣∣∣∣
∣∣∣∣∣
√

1
T

T

∑
t=1

(xi(t)−si(p, t))2

∣∣∣∣∣
∣∣∣∣∣
∞

(3)

F(p) =
1
N

N

∑
i=1

f (xi ,p) (4)

It should be noted that a single evaluation ofF(p) requiresN
individual simulations.

The Nelder-Mead algorithm [33] (also known as the down-
hill simplex method) is a common method used for solving non-
linear optimization problems when the objective function is non-
differentiable. The algorithm uses adim(p)+ 1 simplex to find
locally optimal solutions through successive evaluations of an
objective function and transformations of points on the simplex.
We initialize the algorithm with a value ofp based on random
valid support point locations and coefficients of friction. Our ob-
jective functionF(p) is customized to return arbitrarily large val-
ues when given a parameter choicep that violates the constraints.
The algorithm is stopped when the simplex size (measured as the
average distance from simplex center to each point) goes below a
threshold. This is an adequate stopping criteria as the algorithm
contracts the simplex when it finds a minimum.

Since the Nelder-Mead method is a downhill search tech-
nique, it can be stuck in local minima and fail to find the globally
optimal solution. In order to reduce this possibility, we initialize
the algorithm with several different random points in the parame-
ter space. Since we believe the parameter space may have mul-
tiple points that closely match the experiments, this practice has
the added benefit of finding several good parameter selections
that can be used to help characterize the model uncertainties that
a manipulation planning algorithm will have to consider.
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Figure 6. Snapshots from experimental data for trajectories obtained

from selected manipulation tests.

Figure 7. Trajectories for manipulation Test 1.

EXPERIMENTAL RESULTS
Experimental Errors

At least three trials for each manipulation test were per-
formed. Figure 6 shows typical trajectories for one trial of each
of the eight tests. The starting and ending configuration of the
part are shown in solid lines, while the intermediate steps are pic-
tured with dotted lines. The probe tip locations are represented
with triangles. The trajectories for each of the trials were not all
the same. They were consistent for the most part, but for certain
starting configurations small variations from the nominal start-
ing configuration of the part and probe can produce substantial
changes in the resulting trajectory.

For each manipulation test performed, theX trajectory of
the parts all showed the best correlation between the trials, while
theY andθ trajectories appear coupled and comprise most of the
trajectory errors.

Test 1 is an example of a manipulation test that is sensitive to
initial conditions, as shown in Figure 7. This test involves push-
ing at the midpoint of the long side of the rectangular part. A
horizontal push directly at the center of mass of the part should
intuitively result in a pure translation, as seen in the figure for
Trial 3. In general, small perturbations from this starting config-
uration will yield either clockwise or counter-clockwise rotations
for the same nominal test as seen in Trials 1, 2, 4, and 5. Most of
this can be attributed to errors from the nominal starting position
at the beginning of the tests. The accuracy of the vision system is
conservatively estimated to be +/- 1 pixel, which corresponds to
position measurement errors of the probe and the part of roughly
+/- 5 µm and angular measurements of roughly +/- 0.005◦ error.

Figure 8(a) demonstrates the experimental trajectories of
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Figure 8. Manipulation test showing large sensitivity to small errors in

initial configuration.

Test 1, that should result in a pure translation but actually pro-
duce a wide range of rotations. However, as we can see from
Figure 8(b), our model and therefore the simulation predict this
sensitivity. When the simulator is presented with initial condi-
tions for the part that lie in a neighborhood of within 5µm and
0.005◦ of the nominal position, the resulting trajectories exhibit a
variation that is similar to that observed experimentally. Because
the outcome is more sensitive to small errors in initial configu-
ration, it is clear such pathological initial conditions should be
avoided for manipulation planning.

Parameter Estimation
We used experimental results from manipulation tests that

were generally repeatable - avoiding ”pathological” configura-
tions. Our Nelder-Mead based estimation algorithm is able to
match simulated trajectories to experimental trials with average
root-mean-squared error of 20 to 40µm in position and of 1 to
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Figure 9. Simulator vs. Experimental Data with p∗1.

3 degrees in orientation. The failure to obtain more accurate
matches across large sets of trials could be partially attributed to
measurement errors, not only the 5µm, 0.005◦ error in measuring
the trajectories, but also the effect of these errors in estimating
the initial configuration. However, it is also likely that failures
are the result of inconsistencies in the supporting surface.

By initializing the estimation algorithm with several random
parameter choices, the algorithm often discovers more than one
local minima in the parameter space. One choice of parameters
can closely match some experimental trials while another choice
can match other trials well.

For a concrete illustration of the result from parameter esti-
mation, we performed a simple parameter estimation using two
experimental tests as input (Tests 3 and 4 from Figure 6). We
initialized the algorithm with two random sets of parametersp
and found two possible solutionsp∗1 andp∗2 (Table 1). Figure 9
shows the error between experiment and simulation for the trials
involved in matching when usingp∗1. As an additional test of the
quality of p∗1 andp∗2, Figure 10 shows the result of simulating
another trial (Test 8 in Figure 6) that wasnot used for parameter
estimation.

The convergence for each execution of the estimation al-
gorithm is shown in Figure 11. The uncertainty of the locally
optimal parameter solutions is approximated by the size of the
Nelder-Mead simplex which is also the stopping criteria of our
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Figure 10. Simulator vs. experimental data with a manipulation not used

for estimation.

Table 1. Estimated Parameter Values for Example

p∗1 p∗2

rs (411.3,−563.3) (−412.4,794.0)

(µm) (−409.1,605.9) (−217.8,774.5)

(−273.2,−102.1) (278.8,−538.8)

µt 0.666 0.536

µs 0.757 0.013

implementation and set to 10µm in this case. Specific values
for p∗1 andp∗2 are shown in Table 1 and Figure 12. Although the
parameter setsp∗1 andp∗2 are distinct, they are qualitatively sim-
ilar since they produce trajectories with comparable errors from
experimental trajectories (Figure 10).

The solutionsp∗1 andp∗2 are similar but have a large discrep-
ancy in the value ofµs. In fact, we observed that in simulation the
value ofµs has minimal affect on the trajectory of the part. This
is due to the fact that it is the distribution of support force and
not the coefficient of surface friction that will affect the motion.
Since we cannot sense the force being applied by the probe, we
cannot observe the actual frictional forces being exerted.
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Figure 11. Convergence of estimation algorithm.

DISCUSSION
A good understanding of grasping and manipulation for

meso-scale assembly at the millimeter and sub-millimeter length
scales requires a good characterization of the mechanics of ma-
nipulation and the uncertainty associated with frictional contact
interactions. This paper describes an experimental approach to
modeling the mechanics of frictional contact with applications
to manipulating and assembling planar parts with a single probe.
Though we used a specific probe and part geometry for this work,
our characterization method and the quasi-static modeling ap-
proach is valid for other geometries.

The main finding of the paper is the fact that the trajecto-
ries generated by simulating the experimentally derived model
of the force distribution and coefficients of friction match exper-
imental trials with a root-mean-squared error of 20-40µmover a
600µmmotion of the probe. Smaller motion of the probe result
in smaller errors. We were also able to identify special cases in
which manipulation tests have outcomes that are overly sensitive
to initial starting conditions. These special cases are predicted by
our simulator and observed experimentally.

Our results are the first step toward creating models for
quasi-static, vision-guided meso-scale manipulation. Applica-
tion of the model to generate motion plans for assembly is dis-
cussed in [4]. Indeed preliminary results show that this approach
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Support Triangles

Figure 12. Support point locations for p∗1 and p∗2

Start 1 2

3 4 5

Figure 13. Manipulation task: Preliminary experimental results obtained

from a plan generated by the model in Table 1

is promising for simple manipulation tasks. An example of the
application of this approach is shown in Figure 13. The plan for
assembling the part was generated automatically based on the
model derived in this paper and the snapshots shown in the fig-
ure were taken during the execution of this plan. Because the
clearance between the 1612µm× 842 µm rectangular part and
the slot is 137µm, it is possible to use our approximate model for
successful assembly. Indeed our approach yields a 100% success
rate in such tasks. However, it is clear that tighter tolerance tasks
will require better models. Modeling and planning continue to
remain an area of interest for future work.
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