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ABSTRACT
In this paper, we present the design of the Omnicopter, a mi-

cro aerial vehicle (MAV) with two central counter-rotating coax-
ial propellers for thrust and yaw control and three perimeter-
mounted variable angle ducted fans to control roll and pitch.
First, a dynamic model of the robot is established using the
Euler-Lagrange formalism. Next, we focus on the attitude control
for a special operating case of the Omnicopter with fixed verti-
cal positions of the surrounding ducted fans. A nonlinear model
is represented in state space using the quaternion and angular
velocity as state variables, which simplifies the system dynamics.
Based on this model, a feedback linearization controller is de-
veloped, which renders the system linear and controllable from
an input-output point of view. The zero dynamics problem is also
analyzed. Finally, simulations are carried out and the results il-
lustrate that the attitude stabilization task for the Omnicopter is
achieved.

I. INTRODUCTION
The interest in autonomous micro aerial vehicles (MAV) has

been steadily growing in the last few decades. These kinds of
vehicles can be used in tasks such as search and rescue, surveil-
lance, building exploration, manipulation, communication re-
laying, inspection and mapping. Their small size provide for
low acoustic signatures and radar cross-sections that are ideal
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FIGURE 1. Omnicopter MAV Schematic

for stealth operations [1]. In the last few years, MAVs in the
tri-coptor [2–4] and quadrotor [5–10] configurations have been
highlighted in many papers. There has also been some recent
work on unique MAV configurations that use gyroscopic mo-
ments for attitude control [1, 11, 12]. In the first part of this
paper, we will present our novel VTOL (Vertical Take-Off and
Landing) MAV design called the Omnicopter (Fig.1) along with
its dynamic model based on the Euler-Lagrange formalism. The
system model is represented in state space using quaternion and
angular velocity in the body frame as state variables.

Different control techniques have been applied to the tri-
copter and quadrotor MAV configurations, such as PID, LQR,
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H∞ and sliding mode control [5, 7–9]. The quadrotor MAV is
based on the VTOL concept and is viewed as an ideal platform to
develop control laws, due to its simple structure, agility and con-
trollability. In previous work, the quadrotor MAV has also been
controlled using the feedback linearization technique. In [13], a
dynamic feedback controller was developed to make the input-
output problem solvable for a nonlinear dynamic model. In [14],
a feedback linearization-based controller with a sliding mode ob-
server was designed for the quadrotor MAV. An adaptive ob-
server was added to the control system to estimate the effect of
external disturbances. In the second part of this paper, we focus
on the attitude control of the Omnicopter for a special operating
case that is similar to that of the quadrotor, also using feedback
linearization. Based on the Omnicopter nonlinear model, we de-
sign a quaternion-based attitude control algorithm. The zero dy-
namics problem is also analyzed. Finally, simulations are carried
out and results presented to prove the feasibility of the proposed
controller. The major conclusions of the paper are then drawn
and directions for future work are presented.

II. OMNICOPTER DESIGN
A schematic of the Omnicopter configuration MAV is shown

in Fig. 1. Drawing inspiration from omnidirectional wheels, the
Omnicopter design allows for agile movements in any planar di-
rection with fixed (zero) yaw, pitch and roll angles. It has five
propellers: two fixed major coaxial counter-rotating propellers
in the center used to provide most of the thrust and adjust the
yaw angle, and three adjustable angle small ducted fans located
in three places surrounding the airframe to control its roll and
pitch. Unlike quadrotor or typical trirotor MAVs [2, 3], the Om-
nicopter has different motion principles and control modes. In-
creasing or decreasing the five propeller’s speeds together gener-
ates vertical motion. The yaw movement results from different
speeds of the two counter-rotating coaxial propellers. The roll
and pitch motions can be generated using two methods (M1 and
M2), as shown in Fig. 2. For M1, fixed ducted fan angles with
varying fan speeds are used; and for M2, varying both the angles
and speeds of the ducted fans are employed for attitude control.
With method M1, the difference between the speeds of Fan 4 and
5 produces roll motion coupled with lateral motion. The pitch ro-
tation and the corresponding lateral motion result from the differ-
ence between Fan 3’s speed and the collective effect of rotation
of Fan 4 and 5. The second control method (M2) is to adjust the
angles of the surrounding ducted fans, with the fan’s speeds vari-
able or fixed, to generate the roll and pitch motions. This control
method, or operating mode, allows for lateral force vectors to
be applied to the airframe while keeping a planar, zero attitude
configuration. This design feature is unique to the Omnicopter,
when compared to traditional quadrotor and tri-copter designs
(Fig. 3). This is advantageous in outdoor operating scenarios
when steady point-to-point lateral translation in the presence of

FIGURE 2. Omnicopter Control Methods. M1: Fixed ducted fan an-
gles with varying speeds (left); M2: Variable ducted fan angles and vari-
able speeds (right)

FIGURE 3. Comparison of between the Quadrotor, Tricopter, and
Omnicopter MAVs. Case 1: Hover; Case 2: Lateral Translation in the
presence of disturbances (wind). The Omnicopter can maintain zero roll
and pitch attitude for Case 2 while the other configurations cannot.

external disturbances, such as wind, is needed, for example in
accurate remote sensing applications.

III. SYSTEM MODELING
The coordinate systems and free body diagram for the Om-

nicopter are shown in Fig. 4. The inertial frame I = {Ix, Iy, Iz}
is considered fixed with respect to the earth, with axis Iz pointing
downward. Let B = {Bx, By, Bz}, which is attached to the center
of mass of the Omnicopter MAV, be the body frame, where the
Bx axis is in the forward flight direction, By is perpendicular to
Bx and positive to the right in the body plane, whereas Bz is or-
thogonal to the plane formed by Bx and By and points vertically
downwards during perfect hover. We use Z-Y-X Euler angles to
model the rotation of the Omnicopter MAV in the inertial frame.
The airframe orientation is given by a rotation matrix R: B→ I,
where R ∈ SO(3) is an orthonormal rotation matrix. To get from
B to I, we first rotate about Bz by the yaw angle, ψ , then rotate
about the intermediate Y-axis by the pitch angle, θ , and finally
rotate about the Ix axis by the roll angle, φ . This rotation matrix
is given by [15]:

R =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − sφcψ

−sθ cθsφ cθcφ


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FIGURE 4. Omnicopter MAV free body diagram (B: Body-fixed co-
ordinate frame; I: Inertial reference frame)

where c = cos and s = sin.
The derivatives with respect to time of the roll, pitch and

yaw angles can be expressed in the form

 φ̇

θ̇

ψ̇

=

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ secθ cosφ secθ

ωx
ωy
ωz

 (1)

where ωωω = [ωx ωy ωz]T is the angular velocity in the body frame.

A. Modeling with Euler-Lagrange Formalism
We choose the generalized coordinates vector to be q = [εεε;

ζζζ ] = [ε1 ε2 ε3 φ θ ψ]T , where εεε = [ε1 ε2 ε3]T represents the
position of the Omnicopter mass center expressed in the iner-
tial frame I, and ζζζ = [φ θ ψ]T is the Euler angles vector. The
generalized force vector about the generalized coordinates is ΓΓΓ =
[F; τττ] = [Fε1 Fε2 Fε3 τφ τθ τψ ]

T . The generalized forces of the
translational movement can be obtained as the following:

F = R

 kF2(Ω
2
3cα− (Ω2

4cβ +Ω2
5cγ)s30◦)

kF2(Ω
2
5cγ−Ω2

4cβ )c30◦

−kF1(Ω
2
1 +Ω2

2)− kF2(Ω
2
3sα +Ω2

4sβ +Ω2
5sγ)

 (2)

where kF1 and kF2 are factors that relate the central propeller’s
speeds to thrusts, the 30◦ angle is shown in Fig. 4, and Ωi denotes
each propeller’s speed, i = 1, 2, · · ·, 5.

The nonconservative torques acting on the Omnicopter
MAV result firstly from the thrust imbalance of the three sur-
rounding ducted fans by:

τx1 = (F5 sinγ−F4 sinβ )l cos30◦

τy1 = (F4 sinβ +F5 sinγ)l sin30◦−F3(sinα)l
τz1 = 0

Secondly, torques result from the gyroscopic effects due to
the propellers rotation by assuming that the upper propeller in the
center rotates CCW (counterclockwise) and the lower one rotates
CW (clockwise):

τx2 = Jpωy(Ω1−Ω2)
τy2 = Jpωx(Ω2−Ω1)
τz2 = 0

where Jp is the propeller inertia.
The final component of the torques are due to the reactive

torque imbalance of propeller 1 and 2:

τx3 = 0
τy3 = 0
τz3 = kM(Ω2

1−Ω2
2)

where kM is a factor that relates the central propeller’s speeds to
the counter torque.

Thus, the total torques acting about the x, y and z axes are

τx = (F5sγ−F4sβ )lc30◦+ Jpωy(Ω1−Ω2)
τy = (F4sβ +F5sγ)ls30◦−F3sαl + Jpωx(Ω2−Ω1)
τz = kM(Ω2

1−Ω2
2)

(3)

From Eq. (1), we can obtain

ωωω =

1 0 −sinθ

0 cosφ sinφ cosθ

0 −sinφ cosφ cosθ

 φ̇

θ̇

ψ̇

 (4)

Since the Omnicopter MAV is symmetric with respect to the
BxBy and BxBz planes, we can assume that the inertia matrix is
diagonal

J =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (5)
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According to Eq. (4) and Eq. (5), we can obtain the angular
momentum relative to the mass center o

Ho = Jωωω

Then the kinetic energy equation can be expressed as fol-
lows:

T = 1
2 mvo · vo +

1
2 ωωω ·Ho

where vo is the velocity of the Omnicopter in the inertial frame.
The potential energy is:

V =−mgε3

Based on the kinetic and potential energy equations, we can
derive the equations of motion using the Euler-Lagrange formal-
ism [16]

Γ j =
d
dt (

∂T
∂ q̇ j

)− ∂T
∂q j

+ ∂V
∂q j

where q j denotes a component of the generalized coordinates
vector, j = 1, 2, · · ·, 6.

Finally, the equations of motion are obtained as the follow-
ing:

mε̈1 = Fε1
mε̈2 = Fε2
mε̈3−mg = Fε3
Ixxω̇x− (Iyy− Izz)ωyωz = τx
Iyyω̇y− (Izz− Ixx)ωxωz = τy
Izzω̇z− (Ixx− Iyy)ωxωy = τz

(6)

In Eq. (6), Fε1 , Fε2 and Fε3 represent the generalized forces
of the translational movement in Eq. (2) for a complete system
model.

In this paper, we focus on an Omnicopter being controlled
with method M1 (Fig.2(left)): fixed angle ducted fans with vary-
ing speeds. We assume that the surrounding ducted fans point
vertically upwards, thus the angles α , β and γ in Eq. (2) become
90◦. In this case, the Bx and By components of F become 0, and
the equations of motion of the translational subsystem become

mε̈1 =−(cψsθcφ + sψsφ)U1
mε̈2 =−(sψsθcφ − cψsφ)U1
mε̈3−mg =−cθcφU1

where U1 = kF1 (Ω2
1 + Ω2

2) + kF2 (Ω2
3 + Ω2

4 + Ω2
5).

Now similar in dynamics to the quadrotor MAV, as shown
in [5], the linear equations of motion are simple in the inertial
reference frame, while the angular equations are advantageous
to be expressed in the body-fixed coordinate frame. Therefore,
the translational equations of motion of the Omnicopter MAV are
expressed in the inertial frame, while the rotational equations are
expressed in the body-fixed frame (τx, τy and τz in Eq. (6)).

B. Quaternion-based State Space Representation
For the attitude control of the Omnicopter MAV, the rota-

tional movement can be extracted and simplified in order to de-
sign a feedback linearization controller. As stated above, the an-
gles α , β and γ in Eq. (2) and (3) are 90◦. The gyroscopic
effects (τx2 , τy2 and τz2 ) included in Eq. (3) then become zero in
a simplified version of rotational dynamics. Then the simplified
attitude dynamics are shown as follows:

ω̇x = a1ωyωz +b1U2
ω̇y = a2ωxωz +b2U3
ω̇z = a3ωxωy +b3U4

(7)

where
U2 = kF2(Ω

2
5−Ω2

4)
U3 = kF2 [(Ω

2
4 +Ω2

5)sin30◦−Ω2
3]

U4 = kM(Ω2
1−Ω2

2)

and a1 = Iyy−Izz
Ixx

, a2 = Izz−Ixx
Iyy

, a3 = Ixx−Iyy
Izz

, b1 = l cos30◦
Ixx

, b2 = l
Iyy

, b3

= 1
Izz

.
Although the Euler angles representation is more under-

standable and straightforward than the quaternion representation,
it has a singularity problem when the pitch angle, θ , approaches
90◦ [17]. In addition, the attitude dynamics will be largely sim-
plified when using the quaternion instead of Euler angles as the
state variables. Due to these reasons, the quaternion-based dy-
namic modeling method has been widely used in spacecrafts’
control [18]. Therefore, we adopt the quaternion instead of Euler
angles to establish the state equations. Let Q = [q0 q1 q2 q3]T

be the attitude quaternion of the Omnicopter MAV, then the rela-
tionship between the quaternion and the angular velocity can be
expressed as follows [19]:

q̇0
q̇1
q̇2
q̇3

=
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


ωx

ωy
ωz

 (8)

Now we can define the state variable to be x = [q0 q1 q2 q3
ωx ωy ωz]T . Using Eq. (7) and (8), we get a system of nonlinear
differential equations which is described in state space form by

ẋ = f (x)+g(x)u
y = h(x) (9)

4 Copyright © 2012 by ASME



where

f (x) =



− 1
2 ωxq1− 1

2 ωyq2− 1
2 ωzq3

1
2 ωxq0 +

1
2 ωzq2− 1

2 ωyq3
1
2 ωyq0− 1

2 ωzq1 +
1
2 ωxq3

1
2 ωzq0 +

1
2 ωyq1− 1

2 ωxq2
a1ωyωz
a2ωxωz
a3ωxωy



g(x) =
[

g1(x) g2(x) g3(x)
]
=


04×3

b1 0 0
0 b2 0
0 0 b3


and u = [U2 U3 U4]T is the input of the attitude subsystem, y =
[h1(x) h2(x) h3(x)]T = [q1 q2 q3]T is chosen to be the output of
the system. Since the unit quaternion satisfies the constraint, q2

0
+ q2

1 + q2
2 + q2

3 = 1, the state variable q0 can be solved.

IV. FEEDBACK LINEARIZATION CONTROLLER
This section deals with the design of a quaternion-based

feedback control scheme for the purpose of transforming the
nonlinear system (9) into a linear and controllable system. Each
of the output components is differentiated a sufficient number
of times until a control input component appears in the resulting
equation. Using the Lie derivative, input-output linearization can
transform the nonlinear system into a linear system. Then we can
apply a linear control law for the linearized system.

A. Feedback Linearization
Following the method in [13], the vector relative degree of

the system (9), [r1 r2 r3]T = [2 2 2]T , while the dimension of the
system is 7. Since r1+r2+r3 = 6 < 7, the nonlinear system can be
input-output linearized only. Thus, we have

 y1
(r1)

y2
(r2)

y3
(r3)

= D(x)+E(x)u

where D(x) and E(x) are computed as:

D(x) =

Lr1
f h1(x)

Lr2
f h2(x)

Lr3
f h3(x)



E(x) =


Lg1Lr1−1

f h1(x) · · · Lg3Lr1−1
f h1(x)

...
. . .

...
Lg1Lr3−1

f h3(x) · · · Lg3Lr3−1
f h3(x)

 (10)

where the Lie derivatives are defined as:

L f hi(x) = ∑
7
j=1

∂hi
∂xi

f (x),

Lri
f hi(x) = L f (L

ri−1
f hi(x)) = ∑

7
j=1

∂L
ri−1
f hi

∂xi
f (x),

and
LgiL

ri−1
f hi(x) = ∑

7
j=1

∂L
ri−1
f hi

∂xi
gi(x), i = 1,2,3.

The feedback linearization is feasible if and only if the ma-
trix E(x) is nonsingular, which means that det(E(x)) 6= 0. We can
obtain the matrix E(x) by calculating Eq. (10)

E(x) =
1
2

 b1q0 −b2q3 b3q2
b1q3 b2q0 −b3q1
−b1q2 b2q1 b3q0

 (11)

From (11), we know that

det(E(x)) = 1
8 b1b2b3(q2

0 +q2
1 +q2

2 +q2
3)q0 =

1
8 b1b2b3q0

When q0 6= 0, the matrix E(x) is nonsingular and the input-
output linearization problem is solvable for the nonlinear system
(9). Letting v = D(x) + E(x)u, we can compute the control law
of the form

u = E−1(x)(v−D(x))

B. Linear Control for the Linearized System
Using the feedback linearization technique, the system (9)

can be transformed into a system which, in suitable coordinates,
is input-output linearized and controllable. The change of coor-
dinates ξ = Φ(x) is given by

ξ1 = h1(x) = q1 ξ4 = L f h1(x) = q̇1
ξ2 = h2(x) = q2 ξ5 = L f h2(x) = q̇2
ξ3 = h3(x) = q3 ξ6 = L f h3(x) = q̇3

In the new coordinates, the system appears as

ξ̇ξξ = Aξξξ +Bv
y = Cξξξ

(12)

in which, ξξξ = [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6]T , and

A =

[
03×3 I3×3
03×3 03×3

]
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FIGURE 5. Block diagram of the control system built in Simulink

B =

[
03×3
I3×3

]

C =
[

I3×3 03×3
]

For the linear system (12), one can design a controller us-
ing a linear control law, which assigns the poles of the closed
loop linear system to desired positions. The block diagram of
the overall control system used here is shown in Fig. 5.

In the next section, simulations are carried out to verify the
feasibility of the controllers proposed above.

C. Zero Dynamics Analysis
Note that the state variable q0 is not connected to the output

y. In other words, the linearizing feedback control has made q0
unobservable from y. We must make sure that the variable q0
is well behaved; that is, stable or bounded in some sense. This
internal stability issue is addressed in the following by using the
concept of zero dynamics [20].

The selection of the zero dynamics variable η has to satisfy
two requirements: z = T(x) = [η ; ξξξ ] is a diffeomorphism and
∂η

∂x g(x) = 0 [20]. Choose η = q0, then

∂η

∂xg(x) =
[

1 01×6
]

04×3
b1 0 0
0 b2 0
0 0 b3

= 0

In order to make sure that z = T(x) = [η ; ξξξ ] is a diffeomor-
phism, we can calculate the Jacobian matrix of z and its determi-

nant as follows:

J(z) = ∂z
∂x =

[
I4×4 04×3

ΛΛΛ(ωωω) Sk(Q)

]

where
ΛΛΛ(ωωω) =

 1
2 ωx 0 1

2 ωz − 1
2 ωy

1
2 ωy − 1

2 ωz 0 1
2 ωx

1
2 ωz

1
2 ωy − 1

2 ωx 0



Sk(Q) =

 1
2 q0 − 1

2 q3
1
2 q2

1
2 q3

1
2 q0 − 1

2 q1
− 1

2 q2
1
2 q1

1
2 q0


det(J(x)) = 1

8 q3
0 +

1
8 q0q2

1 +
1
8 q0q2

2 +
1
8 q0q2

3 =
1
8 q0

When q0 6= 0, the Jacobian matrix is nonsingular and the
zero dynamics satisfies the two requirements, so the system will
be stable. In terms of the requirement for the matrix E(x) and the
two requirements for the zero dynamics, we can conclude that the
feedback linearization controller can work under the condition of
q0 6= 0 (q0 = 0 means that when expressed in the quaternion form,
the rotation around an arbitrary 3D axis which is represented by
the vector component of the quaternion is 180◦; q0 = 1 means
that the Euler angles are stabilized to be 0).

TABLE 1. Omnicopter Attitude Stabilization Results
Roll Pitch Yaw Roll Pitch Yaw Convergence time

φ0 θ0 φ0 φd θd φd (seconds)

70◦ 80◦ 90◦ 0◦ 0◦ 0◦ 1.8

30◦ 45◦ 60◦ 0◦ 0◦ 0◦ 1.5

30◦ 20◦ 10◦ 0◦ 0◦ 0◦ 1.6

6 Copyright © 2012 by ASME



FIGURE 6. Attitude stabilization in the presence of signal noise and
periodic disturbances with an amplitude of 0.08 Nm

FIGURE 7. Quaternion components q1 - q3 converge to 0 and q0 con-
verges to 1 in the presence of noise and periodic disturbances with an
amplitude of 0.08 Nm

V. SIMULATIONS AND ANALYSIS
Based on the control laws discussed, various simulations

with different initial conditions were performed (see Table 1 for
some examples). We found that with different initial conditions,
the Euler angles can always be stabilized in a short convergence
time, which proves the effectiveness of the proposed controller.
Two of the results are presented in detail here to illustrate the
performance of the proposed controller. Assume that the ini-
tial attitude is [φ0 θ0 ψ0]T = [30◦ 45◦ 60◦]T , and the controller
has to stabilize the attitude to the origin [0 0 0]T . According
to the transformation relation between the Euler angles and the
quaternion [19], the equilibrium attitude, [φd θd ψd]T = [0 0 0]T ,
corresponds to [q0 q1 q2 q3]T = [1 0 0 0]T .

To test the performance of the controller, in the first simu-

FIGURE 8. Attitude stabilization in the presence of signal noise and
periodic disturbances with an amplitude of 0.5 Nm

FIGURE 9. Attitude stabilization in the presence of signal noise and
periodic disturbances with an amplitude of 3 Nm

lation, white noise with zero mean and 0.01 variance has been
added to the angular velocity signals. The following periodic
disturbances are also added to the attitude subsystem (7):

d =

 µ sin(πt)+µ sin(πt/10)
µ sin(πt)+µ sin(πt/10)
µ sin(πt)+µ sin(πt/10)

Nm

where µ is chosen to be 0.08 Nm, 0.5 Nm and 3 Nm in different
simulations. The results of these simulations are shown in Fig. 6-
9. We can find that when the amplitude achieves 3 Nm, obvious
periodic oscillation will happen. The controller will not be able

7 Copyright © 2012 by ASME



FIGURE 10. Attitude stabilization in the presence of signal noise and
abrupt aerodynamic moment disturbances

to well stabilize the Omnicopter at that time.
In the second simulation, external disturbances on the aero-

dynamic moments were considered. When t ∈ [2, 2.3)s, the dis-
turbance Ap = 2 Nm was introduced, when t ∈ [4, 4.3)s, the dis-
turbance Aq = -2 Nm was introduced and when t ∈ [6, 6.3)s, the
last disturbance with an amplitude of Ar = 3 Nm was applied.
These simulation results are pictured in Fig. 10. Thus, Fig. 6-10
show that the attitude can still be stabilized in the presence of
sensor noise and periodic/abrupt moment disturbances.

VI. CONCLUSION
In this paper, the new Omnicopter MAV design has been

presented. It is unique in its ability to withstand external distur-
bances and translate in the plane with a zero attitude, due to the
lateral thrust vectors produced by its perimeter mounted variable
angle ducted fans. A dynamic model of a coaxial MAV has been
established using the Euler-Lagrange formalism. Then a feed-
back linearization controller has been developed for the special
operating case with fixed vertical ducted fans. This controller
renders the attitude subsystem linear and controllable from an
input-output point of view. The simulation results prove that the
attitude stabilization task for the Omnicopter is achieved in the
presence of external disturbances.

The feedback linearization method used here depends on
perfect knowledge of the system dynamics and uses that knowl-
edge to cancel the nonlinearities of the system, but the system
modeling is very difficult to be exact. Unmodelled dynamics,
parameter uncertainties and unknown disturbances always exist,
and therefore affect the cancelation of nonlinearities when using
feedback linearization. In order to overcome the model inaccu-
racies, further investigation will be carried out on system identi-
fication and robust controllers. In addition, our future work will

explore using the more advanced control method (M2), that is,
control it by varying both angles and speeds of the ducted fans,
for increased performance. A prototype will be constructed ac-
cordingly and the various control strategies will be experimen-
tally verified on the platform.
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