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ABSTRACT
In this paper, linear control techniques are applied to a novel

Omnicopter MAV design. This design is unique in its ability to
withstand external disturbance and translate horizontally with
more stable attitude. A dynamic model of the Omnicopter MAV
has been developed using the Newton-Euler formalism. Based on
a linearized version of the model with a fixed vertical ducted fan
angle configuration, three different control schemes, namely PD
control, Lyapunov-based control and optimal LQ control have
been designed and proposed. Comparisons and relations be-
tween the three control schemes are discussed and simulations
are presented. Finally, details on the Omnicopter prototype and
initial test flights are presented. Controlled flights with vertical
take-offs and landings have been achieved utilizing the PD con-
trol scheme.

I. INTRODUCTION
Autonomous micro aerial vehicles (MAV) can be used in

tasks such as search and rescue, surveillance, building explo-
ration, inspection and mapping. The MAV in the quadrotor con-
figuration is based on the VTOL (Vertical Take-Off and Land-
ing) concept and is viewed as an ideal platform to develop con-
trol laws, due to its simple structure, agility and controllability.
In the last few years, the quadrotor MAV has been highlighted
in many papers [1–6]. There has also been some recent work

∗Address all correspondence to this author.

on unique MAV configurations that use gyroscopic moments for
attitude control [7–9], MAVs in the tri-coptor [10–12] configura-
tions, and coaxial MAVs [13, 14].

In this paper, we first review our novel VTOL MAV design
called the Omnicopter (Fig. 1, top) [15]. Then we derive its
dynamic model based on the Newton-Euler formalism, alterna-
tively to the Euler-Lagrange method we used before. Next, we
examine three different control schemes (PD, Lyapunov’s direct
method and optimal control) for a special operating case of the
Omnicopter. Finally, we present a constructed prototype along
with initial test flight results.

II. OMNICOPTER DESIGN OVERVIEW
A schematic of the Omnicopter configuration MAV is shown

in Fig. 1 [15]. Drawing inspiration from omnidirectional wheels,
the Omnicopter design allows for agile movements in any planar
direction with fixed (zero) yaw, pitch and roll angles. It has five
propellers: two fixed major coaxial counter-rotating propellers in
the center used to provide most of the thrust and adjust the yaw
angle, and three adjustable angle small ducted fans located in
three places surrounding the airframe to control its roll and pitch.
The Omnicopter has three main advantages over other VTOL
UAVs, such as quadrotors and helicopters. First, the Omnicopter
can generate roll and pitch motions two ways: M1: Fixed ducted
fan angles with varying speeds; M2: Variable ducted fan angles
and variable speeds. Second, all rotors are enclosed within pro-
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FIGURE 1. Omnicopter MAV Schematic (Top), and Omnicopter
MAV free body diagram (Bottom), B: Body-fixed coordinate frame; I:
Inertial reference frame.

tective ducts, permitting flights in obstacle-dense environments
with reduced risk of damage. Third, the Omnicopter can main-
tain zero roll and pitch attitude for hover and lateral translation
in the presence of disturbances (wind). This permits more stabi-
lized horizontal flights.

III. SYSTEM MODELING
The coordinate systems and free body diagram for the Om-

nicopter are shown in Fig. 1. The inertial frame I = {Ix, Iy, Iz}
is considered fixed with respect to the earth, with axis Iz pointing
downward. Let B = {Bx, By, Bz}, which is attached to the cen-
ter of mass of the Omnicopter MAV, be the body frame, where
the Bx axis is in the forward flight direction, By is perpendicular
to Bx and positive to the right in the body plane, whereas Bz is
orthogonal to the plane formed by Bx and By and points verti-
cally downwards during perfect hover. The airframe orientation
is expressed by a rotation matrix RRot : B → I, which is given

by [16]:

RRot =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − sφcψ

−sθ cθsφ cθcφ


where c = cos and s = sin.

The time derivatives of the roll (φ ), pitch (θ ) and yaw (ψ)
angles can be expressed in the form

 φ̇

θ̇

ψ̇

=

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ secθ cosφ secθ

ωx
ωy
ωz


where ωωω = [ωx ωy ωz]T is the angular velocity in the body frame.

We choose a coordinate vector q = [εεε; ζζζ ] = [ε1 ε2 ε3 φ θ

ψ]T , where εεε = [ε1 ε2 ε3]T represents the position of the Omni-
copter mass center expressed in the inertial frame I, and ζζζ = [φ
θ ψ]T is the Euler angles vector. The external forces exerting on
the Omnicopter can be obtained as the following:

F = RRot

 kF2(Ω
2
3cα− (Ω2

4cβ +Ω2
5cγ)s30◦)

kF2(Ω
2
5cγ−Ω2

4cβ )c30◦

−kF1(Ω
2
1 +Ω2

2)− kF2(Ω
2
3sα +Ω2

4sβ +Ω2
5sγ)

 (1)

where kF1 and kF2 are factors that relate the central two and sur-
rounding three propellers’ speeds to thrusts, respectively. The
30◦ angle in (1) is shown in Fig. 1, and Ωi denotes each pro-
peller’s speed, i = 1, 2, · · ·, 5.

Unlike a quadrotor model, with the two extra force com-
ponents in the BxBy plane, the Omnicopter can achieve more
stabilized lateral flights. Also the ability of withstanding dis-
turbances is improved. The system’s singularity is obtained at
the expense of redundant actuators. But considering that the in-
creased payload capability and the better flight stability with the
powerful and variable ducted fans, we have proposed the Omni-
copter MAV as an alternative solution to small VTOL UAVs.

The external torque vector, τττ = [τx τy τz]T , acting about the
x, y and z axes in the body frame are:

τx = (F5sγ−F4sβ )lc30◦+ Jpωy(Ω1−Ω2)
τy = (F4sβ +F5sγ)ls30◦−F3sαl + Jpωx(Ω2−Ω1)
τz = kM(Ω2

1−Ω2
2)

(2)

Using the Newton-Euler approach [17], we can derive the
dynamics of a rigid body under external forces and torques ap-
plied to the rigid body:[

mI3×3 0
0 J

][
V̇
ω̇ωω

]
+

[
ωωω×mV
ωωω×Jωωω

]
=

[
f
τττ

]
(3)
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where V = [V1 V2 V3]T is the linear velocity expressed in the
body frame, J is the inertial matrix, and f = [ fx fy fz]T is the
force vector in the body frame.

We can expand (3) to obtain 6 independent equations of mo-
tions as the following:

m[V̇1−V2ωz +V3ωy +gsθ ] = fx
m[V̇2−V3ωx +V1ωz−gcθsφ ] = fy
m[V̇3−V1ωy +V2ωx−gcθcφ ] = fz
Ixxω̇x− (Iyy− Izz)ωyωz = τx
Iyyω̇y− (Izz− Ixx)ωxωz = τy
Izzω̇z− (Ixx− Iyy)ωxωy = τz

(4)

Using the Newton-Euler method, we derived the dynamical
model in the body coordinate frame, as shown in (4). We can find
that the translational equations of motion expressed in the body-
fixed coordinate frame are pretty complex. Therefore, we prefer
to express them in the inertial frame, while the rotational equa-
tions are expressed in the body-fixed frame (τx, τy and τz in (4)).
Finally, the equations of motion are obtained as the following:

ε̇εε = υυυ

mυ̇υυ = mge3 +F
ṘRot = RRot · sk(ωωω)
Jω̇ωω =−ωωω× JJJωωω + τττ

(5)

where υυυ is the velocity in the inertial frame, e3 = [0 0 1]T , and

sk(ωωω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


In this paper, since we assume that the surrounding ducted

fans point vertically upwards, the angles α , β and γ in (1) be-
come 90◦. In this case, the equations of motion of the transla-
tional subsystem will become

mε̈1 =−(cψsθcφ + sψsφ)U1
mε̈2 =−(sψsθcφ − cψsφ)U1
mε̈3−mg =−cθcφU1

where U1 = kF1 (Ω2
1 + Ω2

2) + kF2 (Ω2
3 + Ω2

4 + Ω2
5).

IV. CONTROL DESIGN
The Omnicopter is controlled by nested feedback loop as

shown in Fig. 2. The inner attitude control loop uses real-time
Euler angles and angular speeds in the body frame from the IMU

Position 
Control

Attitude 
Control

Φdes

θdes

Ψdes

Dynamics

U1

Φ,θ,Ψ

ωx,ωy,ωz

X, Y, Z

vX,vY,vZ

Reference
Trajectory

U2

U3

U4

FIGURE 2. The nested control loops for position and attitude control

to control the roll, pitch and yaw, while the outer position control
loop uses position and velocity of the robot in the inertial frame
to control the trajectory in 3D. Similar nesting of control loops
can be found in previous works [1, 2]. We developed three dif-
ferent control schemes for the Omnicopter, that is, the classical
PD control, Lyapunov-based control and optimal LQ control, as
presented now.

A. Classical PD Control Design
Attitude Control. We now present an attitude controller

to follow the desired attitude generated by the position control
loop. From (5), the attitude dynamics can be rewritten as

ω̇x = a1ωyωz +b1U2
ω̇y = a2ωxωz +b2U3
ω̇z = a3ωxωy +b3U4

where

U2 = kF2(Ω
2
5−Ω2

4)
U3 = kF2 [(Ω

2
4 +Ω2

5)sin30◦−Ω2
3]

U4 = kM(Ω2
1−Ω2

2)

and a1 = Iyy−Izz
Ixx

, a2 = Izz−Ixx
Iyy

, a3 = Ixx−Iyy
Izz

, b1 = l cos30◦
Ixx

, b2 = l
Iyy

, b3

= 1
Izz

.
If we apply the small angle approximation, φ ≈ 0 and θ ≈

0, the relation between Euler angles’ time derivatives and body
angular speeds can be simplified to be

 φ̇

θ̇

ψ̇

=

ωx
ωy
ωz


Then the attitude subsystem can be linearized to be

φ̈ = b1U2
θ̈ = b2U3
ψ̈ = b3U4

(6)
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Upon the above linear equation (6), we can design a PD con-
troller for the attitude subsystem of the Omnicopter. The controls
are given by:

U2 = KP2(φ
des−φ)−KD2ωx

U3 = KP3(θ
des−θ)−KD3ωy

U4 = KP4(ψ
des−ψ)−KD4ωz

(7)

Position Control. As we have derived before, the posi-
tion dynamics is shown as follows:

mε̈1 =−(cψsθcφ + sψsφ)U1
mε̈2 =−(sψsθcφ − cψsφ)U1
mε̈3−mg =−cθcφU1

In the hover state, U1 = mg, and under the small angle ap-
proximation, we obtain

mε̈des
1 =−(cψdesθ des + sψdesφ des)mg

mε̈des
2 =−(sψdesθ des− cψdesφ des)mg

Therefore,

ε̈des
1 =−g(cosψdesθ des + sinψdesφ des)

ε̈des
2 =−g(sinψdesθ des− cosψdesφ des)

If we assume the desired yaw angle ψdes = 0, then from the
above equations, we can get

θ des =− 1
g ε̈des

1
φ des = 1

g ε̈des
2

The desired accelerations, ε̈des
i (i = 1, 2), are calculated from

PD feedback of the position error, ei = (εi,T - εi), as

(ε̈i,T − ε̈des
i )+ kd,i(ε̇i,T − ε̇i)+ kp,i(εi,T − εi) = 0

where ε̇i,T = ε̈i,T = 0 for hover, while for trajectory tracking con-
trol the reference velocity ε̇i,T and reference acceleration ε̈i,T are
calculated from time derivatives of reference trajectory εi,T .

On the other hand, the altitude dynamic equation, mε̈3 - mg
= -cθcφU1, is linearized to be

ε̈3 = g− 1
mU1

So we can design a PD controller to control the altitude
channel as well:

U1 = mg+KP1(ε3,d− ε3)+KD1
d(ε3,d− ε3)

dt
(8)

B. Control Design based on Lyapunov’s Direct Method
In [18], the author used the Lyapunov’s direct method to

control the attitude subsystem of a quadrotor. Here we extend
this method to control both the position and attitude systems. As
we have derived in the PD control design, the linearized system
is

ε̈1 =−g(cosψdesθ des + sinψdesφ des)
ε̈2 =−g(sinψdesθ des− cosψdesφ des)
ε̈3 = g− 1

mU1
φ̈ = b1U2
θ̈ = b2U3
ψ̈ = b3U4

(9)

We can choose state variables and make the following coor-
dinate transformations:

x1 = ε1− εdes
1 x7 = φ −φ des

x2 = ε̇1 x8 = ωx
x3 = ε2− εdes

2 x9 = θ −θ des

x4 = ε̇2 x10 = ωy
x5 = ε3− εdes

3 x11 = ψ−ψdes

x6 = ε̇3 x12 = ωz

(10)

Position Control. First, let’s construct a candidate Lya-
punov function, V1, which is a positive definite function around
the origin:

V1 =
1
2
(k1x2

1 + x2
2 + k2x2

3 + x2
4 + k3x2

5 + x2
6)

Using equations (9) and (10), the time derivative of V1 can
be calculated to be

V̇1 = k1x1x2 + x2[−g(cosψdesθ des + sinψdesφ des)]+ k2x3x4+
x4[−g(sinψdesθ des− cosψdesφ des)]+ k3x5x6 + x6(g− 1

mU1)
(11)

Therefore, we can simply choose the virtual control inputs
φ des, θ des and the control input U1 to be

φ des =− sinψdes

g (−k1x1− k4x2)+
cosψdes

g (−k2x3− k5x4)

θ des =− cosψdes

g (−k1x1− k4x2)− sinψdes

g (−k2x3− k5x4)

U1 = m(g+ k3x5− k6x6)

(12)

After substituting (12) into (11) and with ki (i = 1, 2, . . . , 6)
as positive constants, we obtain

V̇1 =−k4x2
2− k5x2

4− k6x2
6
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which is negative semi-definite. Since the set S = {V̇1 = 0} is
restricted only to the origin xi = 0 (i = 1, 2, . . . , 6), by LaSalle
invariance theorem, we can ensure the asymptotic stability of the
system.

Attitude Control. Next, for the attitude control design,
we construct another candidate Lyapunov function V2:

V2 =
1
2
(k7x2

7 + x2
8 + k8x2

9 + x2
10 + k9x2

11 + x2
12)

Using equations (9) and (10), the time derivative of V2 can
be calculated to be

V̇2 = k7x7x8 + x8b1U2 + k8x9x10 + x10b2U3 + k9x11x12 + x12b3U4
(13)

Therefore, we can choose the control inputs U2, U3 and U4
to be

U2 =
1
b1
(−k7x7− k10x8)

U3 =
1
b2
(−k8x9− k11x10)

U4 =
1
b3
(−k9x11− k12x12)

(14)

After substituting (14) into (13) and with ki (i = 7, 8, . . . , 12)
as positive constants, we obtain

V̇2 =−k10x2
8− k11x2

10− k12x2
12

In the same way, the asymptotic stability can be guaranteed.
We can find that essentially the control inputs designed using

Lyapunov direct method are similar to those found using PD con-
trol, although the control design process is different. Therefore,
we can tune the control parameters in the Lyapunov-based design
by following the same procedure in the PD control design. The
controls’ performances in both designs should be close to each
other with proper tuning.

C. Optimal Control Design
For the linearized attitude subsystem (6), we can describe it

in the state space as:

ẋ = Ax+Bu

where x = [φ φ̇ θ θ̇ ψ ψ̇]T and u = [U2 U3 U4]T .
We can also control the linearized attitude subsystem using

optimal LQ control. In order to apply the LQ control, let’s define
the cost functional to be:

JC =
∫
(xT Qx+uT Ru)dt

The feedback control law that minimizes the cost value is:

u =−Kcx (15)

where the LQR control gain matrix Kc is provided by Kc =
R−1BT P, and P is derived by solving the algebraic Riccati equa-
tion:

−PA−AT P+PBR−1BT P−Q = Ṗ

The control output and the Omnicopter behavior are tuned
by varying matrices Q and R. The matrices are chosen to be sym-
metric and positive-definite. A first choice for the matrices Q and
R is given by the Bryson’s rule [19]:

Qii =
1

maximum acceptable value of state i
R j j =

1
maximum size of control input j

The weighting matrices Q and R are used to give different
emphases to different states and control inputs. The magnitude
of the Q matrix minimizes the error of states, and the R matrix
minimizes the energy consumption of control. For this linearized
plant, the control gain Kc is designed with the following weight-
ing matrices:

Q =


1 0 0 0 0 0
0 0.001 0 0 0 0
0 0 1 0 0 0
0 0 0 0.001 0 0
0 0 0 0 1 0
0 0 0 0 0 0.001


and R = 0.01*I3x3.

So that

Kc =

10 2.9846 0 0 0 0
0 0 10 3.1560 0 0
0 0 0 0 10 1.7550


The substitution of the gain matrix Kc into (15) leads us to

conclude that the LQR controller is essentially a PD controller as
well. This is expected because when using optimal control, the
closed-loop poles of the linear system are automatically dictated
by the weighting matrices Q and R, while the pole assignment
is equivalent to the PD control in the form of controllers. Con-
sequently, it serves as another way to help tune the PD control
gains.
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FIGURE 3. Point-to-point movement control of the Omnicopter MAV
with noise and disturbances: moving from (0, 0, 0) to (0.5, 0.5, -0.8) m

V. SIMULATION RESULTS
Based on the control designs discussed above, simulations

are done for the Omnicopter. The point-to-point movement is
simulated as shown in Fig. 3. Since the model is built in a
North-East-Down frame, Z = -0.8 m in Fig. 3 means that the
flying height is 0.8 m. To make the simulations more realistic,
random white noise with zero mean and 0.01 variance have been
added to the position and velocity measurements, and the attitude
and angular velocity have been corrupted by noise with 0.0001
variance.

In the first simulation, the Omnicopter was tasked to per-
form a point-to-point movement. In this simulation, besides the
white noise mentioned above, periodic disturbances have also
been added to the dynamical model as the following:

d1 =

0.1sin(πt)+0.1sin(πt/10)
0.1sin(πt)+0.1sin(πt/10)
0.1sin(πt)+0.1sin(πt/10)

∗10−1N

FIGURE 4. PD control: position and attitude (trajectory tracking)

FIGURE 5. PD control: control inputs (trajectory tracking)

and

d2 =

0.1sin(πt)+0.1sin(πt/10)
0.1sin(πt)+0.1sin(πt/10)
0.1sin(πt)+0.1sin(πt/10)

∗10−2N ·m

Then the dynamical model with external disturbances can be
rewritten to be:

ε̇εε = υυυ

mυ̇υυ = mge3 +RRot f +d1
ṘRot = RRot · sk(ωωω)
Jω̇ωω =−ωωω× JJJωωω + τττ +d2

(16)

As we have discussed above, the form of controllers de-
signed in three different ways is essentially the same. So the
control performance of them should be close to each other, as
long as the control gains are tuned properly. As shown in Fig. 3,
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FIGURE 6. PD control: 3D trajectory tracking of the Omnicopter
MAV with noise

the position responses of the closed loop system using the con-
trollers designed in three different ways are almost identical.

In the second simulation, the control objective was to make
the aircraft track a 3D trajectory in the presence of random white
noise. Fig. 4 - 6 show the position, attitude, control inputs and
3D tracking performance for the PD controller case. These re-
sults prove the effectiveness of the proposed PD controller.

VI. PROTOTYPE CONSTRUCTION AND TESTS
A. Prototype Construction

An Omnicopter prototype in the fixed vertical ducted fan
angle configuration has been constructed, as shown in Fig. 7.
The skeleton of the airframe is made from 0.125” diameter
carbon fiber rods along with custom connecting joints laser
cut from ABS plastic. The body of the Omnicopter is made
from Deprom 6 mm thick hobby foam that was similarly laser
cut to size. The two center propellers are 10 x 7 3-blade
Maser Airscrew propellers from Windsor Propeller Company,
Inc. (masterairscrew.com). They are attached to two BP-
U2212/10 brushless outrunner motors from BP Hobbies LLC
(www.bphobbies.com) which are controlled with two Thunder-
bird brushless 18 Amp electronic speed controllers (ESCs) from
Castle Creations, Inc. (www.castlecreations.com). The three
ducted fans are 50 mm EDF (electric ducted fans) from Toyson-
ics.com operating on three Great Planes Speed 120 brushed mo-
tors (www.greatplanes.com) with Blue Arrow 10A brushed ESCs
(www.bluearrow-rc.com). Custom mounts for each of the ducted
fans were 3D printed out of ABS plastic. The Omnicopter uses
the ArduPilotMega from 3D Robotics (3Drobotics.com) for an
IMU and on-board control. A XBee transceiver module allows
for wireless data logging of the IMU data on a local PC. The en-
tire system is powered with two Thunderpower 3-cell 1350 mAhr
Lithium Polymer batteries (www.thunderpowerrc.com). The pro-

FIGURE 7. Omnicopter prototype: Top View (left) and Isometric
View (right)

totype weighs 2 lbs 3.5 oz. with an available payload at 80%
power of approximately 2 lbs 6 oz (∼1 kg). This initial proto-
type is currently configured for remote control with a Spektrum
AR8000 8-Channel DSMX Receiver and DX8 8-channel trans-
mitter (www.spektrumrc.com).

B. Preliminary Test Flights
In order to implement the controller, we have to trans-

form the controls proportional to force/torques into rotor speeds,
which are in turn transformed into supply voltages. The relation
between the controls and rotor speeds is as follows:

U1 = kF1(Ω
2
1 +Ω2

2)+ kF2(Ω
2
3 +Ω2

4 +Ω2
5)

U2 = kF2(Ω
2
5−Ω2

4)
U3 = kF2 [(Ω

2
4 +Ω2

5)sin30◦−Ω2
3]

U4 = kM(Ω2
1−Ω2

2)

With Ω3 being a known value which can be assigned as we
want, we can solve the above equations and arrive at desired rotor
speeds. Initial test flights of the system are underway. Manual
remote control of the lift propellers and robot position has been
coupled with a PD attitude controller. Vertical takeoffs and land-
ings have been achieved with the PD stabilized attitude control,
as shown in Fig. 8.

VII. CONCLUSION
In this paper, we studied the control problem of a new con-

figuration of a MAV called the Omnicopter. It has some advan-
tages over comparable VTOL UAVs with regard to its ability
to produce lateral force vectors. We have presented a dynamic
model of the Omnicopter using the Newton-Euler formalism. In
the initial phase of study, we start from studying the control prob-
lem of the Omnicopter in fixed vertical ducted fan angle config-
uration. For this particular configuration, three different control
designs are presented and analyzed, along with simulations. We
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FIGURE 8. Image mosaic of a preliminary test flight of the Omni-
copter

found that for the linearized model, the controllers we finally ar-
rived at will be essentially the same. Thus we implemented the
PD control on the prototype we built. Initial test flights show that
the attitude controller can stabilize the Omnicopter well.

Future work will essentially investigate the more advanced
control method (M2), that is, controlling it by varying both an-
gles and speeds of the ducted fans, for increased performance.
Autonomous operation in cluttered environments through accu-
rate trajectory control using linear and/or nonlinear control tech-
niques will also be explored in the next phase.
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