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ABSTRACT
One of the most important considerations in the design of

robots is mobility. How does the system traverse the terrain
and environment where it is expected to operate? In past ef-
forts, engineers and scientists have received inspiration from
man-in-the-loop vehicles and modes of mobility used by animals.
While amazing advancements have been achieved, this top-down
approach tends to focus on one specific solution to a problem
which may cause other solutions to be overlooked. This paper
approaches the mobility problem from a different point of view.
Starting with the most basic three dimensional shape, a regular
tetrahedron, we explore seven different modes of mobility aris-
ing from simple modifications of the initial shape. These resul-
tant modes are then resolved into corresponding, existing mech-
anisms that are already widely applied. By using this bottom-up
approach, we are able to explore available mobility modes in
a much more comprehensive manner. Instead of starting with
a complex system in mind, engineers will be able to use simple
building blocks to enable different desired mobility behaviors.

INTRODUCTION
Robotics is a field of study that has been around since the

1700s when marionettes were first programmed to play mu-
sic [1]. As such, the word robot conveys a certain meaning or
preconception. We think of human-like systems such Hondas
Asimo, vehicular systems like the Mars Rover, as well as sta-
tionary, industrial robots that are arms with many linkages.

Throughout the history of the field, a great deal of consid-
eration has been given to the study of different modes of mobil-
ity [2–21]. One of the main purposes of robots is to act as a hu-

man proxy in environments where we cannot survive or perform
as well as we would like. Be it interplanetary exploration [22],
oceanography [23], or disaster search-and-rescue [24], there are
limitations machines can overcome that are beyond the reach of
humans. Hence, it is not surprising much of the inspiration for
the different schema and types of mobility mechanisms comes
from man-in-the-loop vehicles and mimicry of the movement of
humans and other animals. The commonality between these de-
sign methods is they are all top-down approaches that start with
a view or a goal of the behavior of the overall system.

While such methods are extremely useful for solving spe-
cific problems with an end goal in mind, it can obfuscate other
options for solving the same problem. As with any other project,
it is often beneficial to examine the problem from a different
point of view. In this paper, we will approach the mobility prob-
lem from the bottom up. We will exercise the movement capabil-
ities of the most basic of 3-dimensional shapes, a regular tetra-
hedron. For each mobility mode, we will examine the range of
motion that is exhibited. Where applicable, we will also explore
the different applications where it can be and is currently used.

ASSUMPTIONS AND BOUNDARY CONDITIONS
Let us start by defining our tetrahedron. A regular tetrahe-

dron has 4 faces, 4 vertices, and 6 sides. All 4 faces are identical
and all 6 sides have the same length. Since the deformation of
lines is more easily defined than the deformation of planes, we
will only consider the case where the tetrahedron is made up en-
tirely of edges, a wire-frame structure with no faces. For the
purpose of this study, we have chosen to consider the tetrahedron
to only have 4 point masses at the vertices, so the location of
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the center of mass (CoM) will be considered the position of the
tetrahedron (Fig. 1).
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FIGURE 1: REGULAR TETRAHEDRON. THE CIRCLE REPRESENTS THE CoM

It is trivial to see that this initial shape is fully constrained.
Without an outside force, the tetrahedron CoM will not move. It
is the goal of this paper to systematically remove the initial con-
straints in order to give the body mobility. In application, there
will be many different ways of implementing each mode of mo-
bility. Therefore, our calculations will be theoretical and ideal,
without taking into account the possible masses and moments
that will be required to actuate the motions.

It is also important to note that as we remove “key” con-
straints, secondary movements have to be allowed in order to
take advantage of the new degrees of freedom. Therefore, we
will assume that all edges are allowed free rotation relative to
each other. There are no rotational constraints, only prismatic
ones. In addition, all calculations are based on the assumption
that this is a unit tetrahedron. In other words, each edge is of
length 1.

MOBILITY MODE 1: PRISMATIC DOF
Submode 1A

First, let us define a few reference points on the body as
shown in Fig. 2a. The unit tetrahedron is made up of points A, B,
C and D at the locations indicated. The first mode of mobility is
achieved by removing a constraint from one end of a member and
allowing it to become a prismatic joint. In this case we will use
edge CD and allow the end touching point D to be the prismatic
joint. Vertices C and D can now move closer together.

Figure 3 shows the range of motion that is allowed based
on this degree of freedom. In this submode, the range of motion
of the centroid is limited and may not be very useful. It can,
however, be actuated three different ways: controlling the length
of the edge that lies between the two vertices (l), controlling the
angle between the two remaining constrained triangular frames
(θ1), or controlling the angle of the loose edge at the base vertex
(θ2), as illustrated in Fig. 2b.

The resultant range of motion of the CoM as a function of
each of the control variables is shown in Eqn. (1-3).
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FIGURE 2: (a)A UNIT TETRAHEDRON WHERE THE VERTICES ARE AS
FOLLOWS: A (0, 0, 0), B(1, 0, 0), C(0.5, 0.866, 0), D(0.5, 0.289, 0.816) (b)THE

PARAMETERS THAT CAN BE USED TO CONTROL THE MOVEMENT
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FIGURE 3: THE MOVEMENT OF THE TETRAHEDRON BODY AS IT ACTUATES
ALONG THE ”FREED” EDGE
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As one can see, in order to actuate the body from one ex-
treme to the other, we must go from l = 0 to l = 1. This corre-
sponds to 1.231 radians of motion on θ1 but only 0.616 radians
on θ2. This makes θ2 the more efficient control point but the
motor used here for actuation must be more robust in order to
compensate for the larger resultant torque. In terms of the final
range of motion of the centroid, the x-component stays in the
x=0.5 plane. The y- and z-components move slightly as shown
in Fig. 4. From the calculations, the entire range of the CoM is
merely 0.25 or a quarter of the length of an edge. In this situa-
tion, while there is a slight shift in location, it would be a stretch
to call the body mobile by any conventional definition. The CoM
does not move enough to cause tumbling and the tetrahedron is
merely “flexing” in place. If we change the submode of the tetra-
hedron, however, we may indeed achieve mobility.
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FIGURE 4: SUBMODE 1A: Y- AND Z- COMPONENTS OF CoM MOTION IN
TERMS OF l

For all subsequent modes of mobility, we can assume at least
the same three relative actuation points can be used to change
the distance between any two vertices of the tetrahedron. Only
the most interesting actuation scheme will be discussed for each
mode in the remainder of the paper. In addition, the comprehen-
sive set of equations can be found in the technical report accom-
panying this paper [25].

Submode 1B
Starting with the same orientation as in Fig. 2, we will now

actuate the distance between two of the base vertices instead.
In the application of this mode of mobility, we must be sure to
account for the contact points in order to ensure that the motion
achieved is directional. Otherwise, we would be oscillating in
place once again. A great deal of work has been done on the
subject of mechanical contacts, including robotic feet [26–28].
It will be up to the engineer to select the appropriate ones for a
given application.

In this case, let us make the assumption that vertex A will
remain stationary while vertex B moves toward vertex C. Both
vertex B and vertex C are unidirectional contacts and can only
move in the counter-clockwise direction around the z-axis. In
this submode, we are also introducing the concept of gait. The
subsequent movement will occur in two parts. In part 1, vertex B
moves toward vertex C, resulting in a collapsed triangle (Fig. 5b
top row). In part 2, vertex C moves back away from vertex B,
finally arriving at the same relative vertices orientation as when
we started, albeit with a resultant translation and rotation (Fig. 5b
bottom row). In order to simplify the equations for this actuation,
we will use a projection of the aforementioned θ1 on the X-Y
plane as our control point (Fig. 5a). The resultant motion of the
CoM is shown in Fig. 6. The governing equations can be found
in the Technical Report. In application, this mechanism is similar
to a disk cam with an out-of-plane displacement. The total travel
of the CoM is 0.66 edge lengths during one gait cycle.

Submode 1C
Depending on the implementation, it is also possible to

achieve linear motion with this mode of mobility. In Submode
1B, vertex A’s contact with the “ground” is what keeps the tetra-
hedron moving in a circle. If only two points are in contact with
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FIGURE 5: (a)THE ACTUATION POINT OF SUBMODE 1B. ANGLE θ1 IS
PROJECTED ONTO THE X-Y PLANE AS θ FOR SIMPLICITY (b) THE MOTION OF

THE TETRAHEDRON BODY AS IT ACTUATES THE EDGE BC
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FIGURE 6: SUBMODE 1B:THE RESULTANT MOVEMENT OF THE CoM

the “ground,” and the distance between them is actuated, it would
be possible for the tetrahedron to inch along in a linear fashion.

Submode 1C is defined as per Fig. 7a. Although the tetrahe-
dron, as is, is not statically stable, let us assume this is an ideal
case where the body can and does balance in this configuration.
As mentioned previously, the exercise undertaken here is ideal
and should any particular mechanism or mode of mobility ap-
peal to a designer, the implementation has a great deal of room
for adjustments and options to ensure stability. In this case, we
are placing the prismatic joint on vertex B, allowing the edge AB
to move through it, changing the distance between vertices A and
B. Again, in the application of this mode of mobility, we must be
sure to account for the contact points in order to produce a di-
rectional motion. Given perfectly ideal, unidirectional surface
contacts, we expect vertex B to remain stationary during the first
half of the gait, while vertex A slides towards it. Similarly, in the
second half of the gait, vertex A remains stationary while vertex
B slides forward (Fig. 7b). The resultant CoM motion resides
entirely in the X-Z plane (Fig. 8). In application, this mobility
mode is very similar to the inchworm motion as mentioned by
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FIGURE 8: SUBMODE 1C: RESULTANT MOVEMENT OF THE CoM

Kim [29]. The total travel of the CoM in one gait cycle is 1 edge
length.

MOBILITY MODE 2: SINGLE ROTATIONAL DOF
The idea behind this mode of mobility is to change the dis-

tance between two vertices, similarly to Mode 1, in a different
way. Instead of allowing the end of one edge to slide through a
prismatic joint, we will give the tetrahedron an additional degree
of freedom by placing a hinge in the center of one edge. Recall
that we are allowing free rotation at each of the vertices, letting
each edge segment rotate in relation to the others. The resultant
motion is also very similar to that of Mode 1.

Submode 2A
Starting with the same initial orientation as in Fig. 2, and

using θ1 as indicated in Fig. 2b for actuation, the resultant motion
can be seen in Fig. 9. The motion of the CoM is identical to
that of Mode 1A (Fig. 4). The only additional benefit we gain
from using this mode is that we now have an additional vertex
point, E. Although it is not one of the original four, and therefore
considered massless for our purposes, it can be beneficial as an
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FIGURE 9: MOTION OF THE TETRAHEDRON BODY AS A RESULT OF
ADDING A HINGE TO EDGE CD

end-effector for many robotics applications. The range of motion
of point E is shown in Fig. 10.
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Finally, in application, this mode boils down to a limited
case of a 4-bar mechanism.

Submode 2B
Following the orientation scheme from Mode 1, we now ex-

amine the effects of actuating a “base” edge instead of a side
edge. Again, this mode is very similar to the behavior of Mode
1B. Using the same initial orientation and actuation point as
shown in Fig. 5a, the resultant motion can be seen in Fig. 11.
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FIGURE 11: MOTION OF THE TETRAHEDRON BODY AS A RESULT OF
ADDING A HINGE TO EDGE BC

The resultant motion of the CoM is identical to that of mo-
bility Mode 1B, see Fig. 6. The range of motion of the new point
E is shown in Fig. 12. This mode is a little more different from
Mode 2A than Mode 1B is from Mode 1A. That is because with a
hinge, we have to worry about where the edge must go to get out
of the path of the moving vertices. While Mode 1 simply pushes
the extra length linearly outward, Mode 2A protrudes point E
radially outward while Mode 2B, obstructed by the “ground,”
protrudes its point E in the X-Y plane.
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Submode 2C
Similarly to 2B, this submode/mobility mode is analogous

to Mode 1C. Like 2B, this mode runs into the issue of where the
protruding edge should go. For the sake of slightly simpler equa-
tions, let us allow the new point E, the hinge between vertices A
and B, to protrude in the positive Y direction, in the X-Y plane.
Using the same actuation point as in Fig. 7a, the resultant motion
of the CoM is identical to that shown in Fig. 8. The subsequent
motion of the hinge point E is as shown in Fig. 13. Again, this

0

0.5

1 0

0.5

1
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0.5

1

1.5
X−Coordinate of Location of Point E

time step

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5
Y−Coordinate of Location of Point E

time step

X Y

A

Z

D

C

B

E

FIGURE 13: ACTUATION OF POINT E AS A RESULT OF ADDING A HINGE TO
EDGE AB. THE RANGE OF MOTION IS FROM θ = 70.53o TO θ = 0o AT TIME=13

BACK TO θ = 70.53o

mechanism can be used to achieve the inchworm motion with a
gait cycle travel of 1.

MOBILITY MODE 3: DOUBLE ROTATION DOF
Although the modes described in the previous section do

not appear significantly different from those in Mobility Mode
1, they do give rise to a whole new series of available motions.
Consider the structures in the previous section. If each of the de-
formed/hinged edges were allowed to rotate in the axis of their
two endpoint vertices, they would be able to achieve motion in a
direction perpendicular to those of Mobility Mode 1.

Submode 3A
As in the previous two sections, this submode is almost a

trivial case. However, this is a good demonstration to explain
the second degree of rotational freedom. By definition, the ad-
ditional degree of freedom requires an additional control point.
The initial distance between vertices C and D are set in the same
way as with Mode 1A, using θ1 as shown in Fig. 2b. In addition,
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we need φ as shown in Fig. 14 in order to control the rotation
of the point E. The benefit of this mode is that we now have
out-of-plane motion with point E. In addition, because the circle
that E describes is coupled to our original actuation point θ1, we
have also gained the benefit of being able to control the radius of
the circle. In application, this will also enable the control of the
torque and moment arm about the CD axis. Within the scope of
this study, under the condition that E and the edge it resides on
are massless, the movement of the CoM, regardless of the value
of φ is identical to that of Mobility Mode 1A, as seen in Fig. 4.

Submode 3B
In comparison with the previous Mobility Mode, this sub-

mode is far more interesting. First, let us reorient the original
shape as in Fig. 15a. Our edge of interest is BC. As in Fig. 5a,
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we will control the distance between vertices B and C with the
base angle θ between edges AB and AC. The result of a slight
deformation is shown in Fig. 15b.
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In this submode, because of the location of the “ground,”
the vertices B and C will lift up off the ground as point E is
rotated around axis BC, maintaining contact only at vertex A, as
shown in Fig. 16. To allow this movement, we assume that point
E maintains perfectly static contact with the “ground” while it
is touching it. We are also choosing to actuate the rotation of
the hinged member in one direction only (Fig. 17b). If we had
chosen similar conditions to Mobility Mode 1C, i.e. allow both
vertex A and point E to be unidirectional contacts, and actuated
point E back and forth in only the lower semicircle, we would
once again achieve a form of inchworm motion. In the current
form, the hinged member acts more like a wheel, dragging the
rest of the tetrahedron forward with each rotation. Due to the
vertical component of the motion, the movement of the CoM (see
Fig. 17a) is quite different from all the previous cases.
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FIGURE 17: (a)MOTION OF THE CoM OF THE TETRAHEDRON BODY AS A
FUNCTION OF φ , Y=0. (b)MOTION OF POINT E AS A FUNCTION OF φ , Y=0

This case is particularly interesting because the structure be-
haves very much like a wheel, a common mode of mobility that
we have not yet discussed. In application, this mobility mode
corresponds to the extreme case of a WhegTM with only one
spoke. Similar to another implementation of spoked wheel, the
IMPASS [30], the leg length, or in our case radius of rotation,
can be changed. This mobility mode is also interesting because,
given a mechanism with a large Poisson’s Ratio, like an umbrella,
we would be able to construct a variable-radius wheel. The travel
of the CoM corresponding to one gait cycle is 2r where r is the
effective radius of E due to the θ deformation.

MOBILITY MODE 4: TWO ADJACENT PRISMATIC
EDGES

The next step in our study is to see what happens when we
actuate two edges at the same time. With our unit tetrahedron,
there are three distinct ways of choosing two edges. We will start
with choosing two non-base edges, then one base, one non-base
edge, and finally, two base edges.

Submode 4A
Starting with the orientation specified in Fig. 15a, allow-

ing edges BD and CD to independently and prismatically actuate

through vertex D, we can move vertex D to anywhere in a section
of spherical shell. While the behavior of this mobility mode is
not wildly different from that of 1A, 2A and 3A, it does allow
us to achieve three dimensional motion with both the location of
vertex D and the CoM, as shown in Fig. 18a.
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FIGURE 18: (a)POSSIBLE DEFORMATIONS DUE TO ACTUATION OF EDGES
BD AND CD. THE BLUE SURFACE INDICATES THE POSSIBLE LOCATIONS FOR

VERTEX D. THE RED SURFACE INDICATES POSSIBLE LOCATIONS OF THE CoM.
(b)THE LOCATION OF VERTEX D AS ACTUATED BY φ AND θ .

While it is possible to actuate this motion with the control
points we have already discussed, perhaps the easiest method for
actuating this particular mechanism is by using spherical coordi-
nates. The position of D can be defined by φ , the angle between
the edge AD and the X-Y plane, and θ , the angle of edge AD
around the Z axis (Fig. 18b). Therefore, as long as vertex D re-
mains within distance 1 of both vertices B and C, it and the CoM
can be defined by the following equations:

D = [ cosφ cosθ , cosφ sinθ , sinφ ]
T (4)

CM =
[ √

3
4 + cosφ cosθ

4 , cosφ sinθ

4 , sinφ

4

]T
(5)

Submode 4B
The next adjacent prismatic mobility mode to consider is

the combination of actuating one base edge and one non-base
edge. This mode is a combination of modes 1A and 1B. It will
have all the mobility of the first two mode plus that granted by
the interaction of the two. Since we already established that it
is possible for the base edge to rotate the location of the CoM
around the Z axis, in this discussion we will use a body-fixed
coordinate system to give us a sense of the relative motion. The
axes locations are identical to those used in Fig. 18 except that
the X axis will always pass through the midpoint between vertex
B and vertex C. We have also chosen the same relative actuation
points as from modes 1A and 1B (Fig. 19a).

The range of actuation of θ is dependent on φ , where φ :[
0, π

3

]
and θ :

[
0,arccos

(√
3

3 tan φ

2

)]
. The resultant formulas for

vertex D and the CoM location are as follows.

D =
[

1
2cos φ

2
, 0,

√
3

2 sinθ

]T
(6)
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CM =


1
8 cos φ

2

(
5+

√
3cosθ√

1+8sin2 φ

2

)
1
8 sin φ

2

(
3
√

3cosθ√
1+8sin2 φ

2

−1

)
√

3
8 sinθ

 (7)

Since these calculations are body-fixed, they can be easily
translated based on design choices for mechanisms and contacts.
The most obvious benefit of this mode from 1B is that it allows
the structure to change its profile/height. For many applications
in an obstructed environment, implementing this mechanism will
alleviate some of the movement constraints.

Submode 4C
The last case of two adjacent, prismatically actuated edges

is a combination of two base edges. Once again, we can char-
acterize the mobility exhibited by this mode using a body-fixed
coordinate system. In this case we will be using the edge length
of AB and the angle θ to actuate our motion (Fig. 19b).
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FIGURE 19: (a)THE ORIENTATION OF MOBILITY MODE 4B AND ITS
ACTUATION POINTS φ AND θ . (b)ORIENTATION OF MOBILITY MODE 4C AND

ITS ACTUATION POINTS

The result is, while vertices A and C are stationary, vertex B
is actuated in the plane of z = 0, causing vertex D to also move.
Due to space constraints, we will forego laying out the equations
of motion here. By alternating the edge that is actuated, a sort
of walking gait can be achieved, as seen in Fig. 20. This demon-
strated gait makes the same assumptions about the contact points
A and C that we did in Mobility Mode 1B. When edge AB is
actuating, vertex C must maintain perfect static contact with the
ground and when edge BC is actuating, vertex A must do the
same. In this case, our structure is taking off at a 30 degree an-
gle from the X axis. Of course, in practice, the relative actuation
quantities can be adjusted to achieve any planar angle that is re-
quired.

MOBILITY MODE 5: TWO OPPOSITE PRISMATIC
EDGES

For completeness of this study, we must examine this last
combination of two prismatic edges. There is only one way to
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FIGURE 20: PROGRESSION OF THE FOOTPRINT OF THE TETRAHEDRON AS
EDGES AB AND BC ARE ALTERNATELY ACTUATED

select two non-adjacent edges on this tetrahedron. One of them
must be a base edge and the other must be a non-base edge.

Submode 5A
For the benefits of symmetry in our numbers, we will once

again use the starting orientation from Fig. 15. We will be actu-
ating edges AD and BC and the points of actuation were chosen
as shown in Fig. 21. The resulting motions for vertex D and the
CoM are given by:
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FIGURE 21: THE ORIENTATION OF MODE 5A AND ITS ACTUATION POINTS
lAD AND θ .

D =
[

l2
AD

2cosθ
, 0,

√
l2
AD−

l4
AD

4cos2 θ

]T
(8)

CM =
[

1
2 cosθ +

l2
AD

8cosθ
, 0, 1

4

√
l2
AD−

l4
AD

4cos2 θ

]T
(9)

While the actual behavior of the body is not very different from
Mobility Mode 4B, in this orientation, the equations are a little
simpler. Once again, being able to actuate one base edge grants
us the same motion as in Mobility Mode 1B. Manipulating the
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non-base edge allows us to change the profile of the entire struc-
ture. Due to the slightly different relative positions of the actu-
ated edges, the total range of CoM motion is increased to 0.56.

MOBILITY MODE 6: TWO ADJACENT DOUBLE ROTA-
TIONAL EDGES

We have previously shown that giving one of the edges a
single rotational degree of freedom is not very different from
making that edge prismatic. It is, in fact, the limiting case of
the double rotational degree of freedom, Mode 3. In this section,
we will forego the discussion of single rotation edges and jump
straight into the double rotational ones. Again, we will follow the
scheme of choosing two non-base edges, one base, one non-base
edge, and finally, two base edges.

Submode 6A
For this case, we will be using the same starting orientation

as Mobility mode 4A (Fig. 18a) as well as the same actuation
points θ and φ (Fig. 18b). The main difference is, we will need
to define two additional points, E and F, as the midpoints/hinge
locations of edges BD and CD, respectively (Fig. 22a). The re-
sult of the deformation and subsequent positioning of vertex D
determines the available range of motion for points E and F. For:

D = [ cosφ cosθ , cosφ sinθ , sinφ ]
T (10)

E is then a circle of radius

rE =
1
2

√√
3cosφ cosθ − cosφ sinθ −1 (11)

around the point

CentE =
1
2

[
cosφ cosθ +

√
3

2 , cosφ sinθ − 1
2 , sinφ

]T
(12)

on the plane

x

(
cosφ cosθ −

√
3

2

)
+y
(

cosφ sinθ +
1
2

)
+ zsinφ = 0 (13)

The equations for point F are derived in a similar manner and are
not included here due to space constraints. Please see [25] for
more details.

While this mobility mode gives us a wider range of motion
on the part of both point E and point F, it also brings up a very
troublesome complication, interference between the members.
Consider the case where both E and F are actuated equally to
the maximum extent possible, at φ = θ = 0. Edge AD would
be coplanar with the base of the tetrahedron and bisecting edge
BC. Aside from the fact that rotating either E or F would cause
the base of the tetrahedron to lift up off the “ground,” a situation
we have already dealt with in Mobility Mode 3B, neither E nor F
would be able to move in a full cycle because of the presence of
the edge BC. As another example, should the radius of E’s circle

of motion overlap with that of F, there is also the possibility of
collision during rotation.

Depending on the specific application, there are many dif-
ferent ways of working around the interference problem. The
engineer could stagger the spin of E and F, limit the range of
actuation, or even choose to actuate only one of the two at any
given time. These are only three possible methods for mitigating
interference. With the proper foresight and exploration, it does
not have to be a show-stopper.

Submode 6B
This submode (Fig. 22b) is a combination of Modes 3A and

3B. Like Mode 3B, the base edge rotation has a direct impact
on the location of vertices B, C and D while the non-base edge
rotational range of point F is a result of the final positions.
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FIGURE 22: (a)THE ORIENTATION OF MODE 6A AND NEW HINGE POINTS E
AND F. (b)THE ORIENTATION OF MODE 6B AND NEW HINGE POINTS E AND F.

Due to the increased degrees of freedom and the interdepen-
dency of the vertex and point locations, the equations become
much more complicated. Due to spatial constraints, we will not
list them here. Interested readers may find them in the technical
report [25]. The benefit of this mode is that the body can move,
with a variable gait, linearly while changing the shape/size of its
profile. In close quarters, it can perhaps also push along a wall
or move obstacles with the protrusion of point F.

Submode 6C
For completeness, it behoves us to discuss the case where

both double rotationally actuated edges are on the base. An
example of a pre-deformed structure of this Mobility Mode is
shown in Fig. 23. The distance between vertices A and B and
vertices B and C are actuated by angles θ1 and θ2. Further, the
rotation of point E around axis AB and point F around axis BC
should also be actuated. At this point, recall that we have used
assumptions such as perfect balance in Mobility Mode 1C and
3B. Because of the geometry of the current structure, it becomes
difficult to decide exactly which set of assumptions should take
precedence. If we were to actuate only one edge at a time, we
can maintain our assumption of 3B that the tetrahedron can and
will balance on either vertex A and point F or vertex C and point
E. This would result in a walking gait, like a combination of Mo-
bility Mode 3C and 4C. On the other hand, we cannot maintain
these assumptions if the structure intends to actuate both edges
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FIGURE 23: THE ORIENTATION OF MODE 6C AND NEW HINGE POINTS E
AND F.

at the same time. Actuating point E expects vertex A to lift off
the “ground” and actuating point F expects vertex C to elevate.
Those two things cannot happen concurrently and still maintain
the illusion of real world physics. Therefore, should both edges
need to actuate at the same time, another analysis would have to
be done to determine which contact points would still be touch-
ing the “ground.” The resultant motion can be likened to a small
child sitting on the floor and pulling himself forward using his
legs, which may not be extended the same amount. By adjusting
the relative extended-ness, he may travel in arcs to either side or
move forward linearly.

The equations of motion of this situation are highly depen-
dent on what type of behavior is expected of the structure and we
will forego the lengthy derivation for each subcase in this paper.

MOBILITY MODE 7: TWO NON-ADJACENT DOUBLE
ROTATIONAL EDGES
Submode 7A

As we mentioned in the discussion of Mobility Mode 5,
there is only one way to select two non-adjacent edges. One
of them must be a base edge and the other must be a non-base
edge (Fig. 21). All of the equations of motion that are required
to characterise the behavior of this case have already been cov-
ered in previous sections. The truly interesting part of this case
is the fact that the two articulated edges are essentially perpen-
dicular and offset wheel axles. In fact, vehicles like this already
exist in the toy market, as shown in Fig. 24.

the body can be used to change the CM and the profile of the body. In this case, we can derive an 

additional benefit. Should the body become unstable due to rough terrain or even falling off an edge, 

the two edges are distributed so that no matter what side the structure lands on, one edge will be in a 

position to move the system. 

 This mobility scheme has also already been used in current technology. Most notably, the toy RC 

car industry has products already on the market: 

 

Stunt Genius Remote Controlled Car 

The smaller wheels on this toy give the body stability when balancing for tricks. 

Higher Order Mobility Modes 

 Higher order mobility modes for our tetrahedron body can be constructed by combining any 

number of the configurations already mentioned. We can easily fold down the theoretical structure to a 

single rod if needed. [should the stuff about combinations of these bodies go in this section or future 

work? Or should this whole section be in future work?] 

Summary 

 [Not sure about this summary] In this paper, we started with a basic 3 dimensional body and 

altered it slightly to obtain the possible mobility modes. All the changes were mechanically basic and led 

to structural alterations that could be used to obtain mobility. The derived modes of mobility were then 

compared to existing methods. […and ? what else?] 

Future Work 

FIGURE 24: STUNT GENIUS REMOTE CONTROLLED CAR

The great benefit of these type of vehicles, like other vehi-
cles where the wheel diameters are the largest dimension of the
structure, is that they are incredibly resistant to overturning. This
makes them perfect for rough terrains, unstable environments
and even being dropped out of a larger vehicle. These mecha-
nisms are able to function in whichever orientation they happen

TABLE 1: SUMMARY OF RESULTS

Su
bm

od
e

M
ot

io
n

N
um

be
r

of
A

ct
ua

to
rs

A
dd

iti
on

al
P o

in
ts

C
oM

R
an

ge

1A Oscillation 1 0 0.25

1B Rotational Gait 1 0 0.66

1C Inchworm 1 0 1

2A Oscillation 1 1 0.25

2B Rotational Gait 1 1 0.66

2C Inchworm 1 1 1

3A Oscillation; 2 1 0.25
Rotation

3B Rotation; 2 1 2∗ rE =
[
0, 1

2

]
Inchworm;
Wheelbarrow

4A 3D Oscillation 2 0 0.25

4B Oscillation; 2 0 0.25; 0.66
Rotation

4C Rotational Gait; 2 0 1.14
Walking

5 Oscillation; 2 0 0.56
Rotation

6A 3D Oscillation 4 2 0.25

6B Oscillation; 4 2 0.25; 2∗ rE =
[
0, 1

2

]
Inchworm;
Wheelbarrow

6C Inchworm; 4 2 Highly Variable
Wheelbarrow
Walking

7 Oscillation; 4 2 2∗ rE =
[
0, 1

2

]
Inchworm;
Wheelbarrow

to be in or are able to right themselves into the proper orientation
for performing their functions.

CONCLUSION
In this paper, we have extensively explored the modes of

mobility that arise from slight modifications of an edge-only unit
tetrahedron. Table 1 shows a summary of all the different modes
we have discussed. As one can see, there are many overlapping
areas within the different modes. In addition, as we mentioned at
the beginning, there are many ways of modifying and customiz-
ing the different modes for specific applications. The mobility
modes covered in this paper should only serve as a starting point
for design.

The next step in this effort is to deconstruct our tetrahedron
even further in order to try and capture more modes of mobil-
ity. One of the topics we have not yet explored is tread motion.
How many additional degrees of freedom must be added before
we can achieve that with our starting shape? What about the
side-winder snake motion that has been explored by many other
robotics engineers in the past?

Concurrently, we will also examine the possibility of build-
ing a model of this tetrahedron, incorporating all the degrees of
freedom we have discussed in this paper. Building and actuating

9 Copyright © 2012 by ASME



a real model of this body will provide better understanding of
how reality, with all its imperfections of heat, friction, and other
inefficiencies compare to the mathematically derived simulation.
Having actual hardware will also allow us to drive the structure
in a open loop to test its limitations and find its constraints.
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