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INTRODUCTION

Stem cell research has become very prevalent in re-
cent years.' > Stem cells are naturally produced by
the body during embryonic development; thus, this
research is popular because these cells contain a blue-
print of how to build everything in our body. How-
ever, with the possibility of using stem cells in cell
replacement therapies for various illnesses, a more
ready and less controversial source of stem cells
has been sought. One approach is to create them
artificially by using viruses to deliver a set of tran-
scription factor complementary DNAs into mature
cells that will then dedifferentiate these cells into
an induced pluripotent stem (iPS) cell.* Signals
(instructions) can then be sent to this iPS cell to lead
it down a desired developmental pathway to create
specific cell types. This procedure is shown schemat-
ically in Figure 1A. Creating therapeutically relevant
cells in this manner suffers from the difficulty in pro-
gramming stem cells to become a particular cell type.
An alternative approach is the direct reprogramming
of one cell type into another cell type using the
Transcriptome-Induced Phenotype Remodeling
(TIPeR) approach,>® whereby populations of RNA
are introduced into a host cell in an effort to repro-
gram that host cell. It attempts to wipe out the
current instruction set that is in place in the host cell
and replace it with another. A key feature of the
TIPeR procedure is introducing the RNA
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Figure I. Artificial stem cell creation versus phototransfection for changing cell phenotype. (A) Artificial stem cells (iPS) created from a virus
followed by instruction (cell signaling) to induce phenotype change. (B) Phototransfection: combination of laser poration of cell along with

extracellular delivery of mRNA to induce phenotype change.”

population into the host cell. One method for performing
TIPeR is through the use of transfection ~'2 to transiently
introduce holes into the host cell through which messenger
RNA (mRNA) populations can diffuse. Once the holes
reseal, the introduced mRNA will be translated and produce
functional proteins that can modify the host cell phenotype.
Transfection in the work of Barrett et al.” is performed with
a titanium sapphire laser, and this combination of cell pora-
tion with the extracellular delivery of mRNA is termed “‘pho-
totransfection.” Phototransfection provides a means for
performing functional genomics manipulations on individual
cells and is pictured schematically in Figure 1B in contrast to
the iPS-based approach for changing cell phenotypes. The
current, manual phototransfection procedure consists of
the following steps:

1. Locate cells of interest on a marked coverslip and record
their locations on paper with the same markings.

2. Identify the cytosol and edges of the cell of interest.

3. Define a region to apply a laser to poke a hole in the cell
membrane, considering that firing the laser on dendrite
(arm) portion of the cell or on the cytosol region of the
cell will damage it.

4. Locally apply mRNA of a donor cell to the target cell
using a pipette.

5. Observe cell changes at various time intervals (hours,
days, and weeks) and repeat as needed.

This process is very tedious and inefficient. The overall
yield rate of the cells just surviving the process is
70%—80%, not that they are necessarily changing from
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one type of cell to another. The current morphological mea-
surements here are also inadequate. They only provide a cell
area metric in which the user first traces the cell border in one
particular program and saves it as a cell boundary image.
This is followed by importing this new image to another
program to fill in the region inside the cell border. This filled
cell image is then imported back into the original program to
actually measure the area of cell.

The throughput for the manual phototransfection process
is 20 cells/h. The goal here is to apply flexible automation
techniques to increase the throughput to about 360 cells/h.
This is important to rapidly explore many different amounts
and types of donor RNAs, perform various functional tests
to see what genes have been expressed and to fill out micro-
arrays for data analysis and fine tuning of the overall proce-
dure. It is also desired to be able to better quantify the cell
morphology (CM) for comparisons before/after the process
to use as one measure to verify that the cell is indeed chang-
ing from one type of cell to the other.

There is related work on automated systems to improve the
efficiency, productivity, quality, and reliability for procedures
and processes in the life sciences. Applying microrobotic and
flexible automation technologies to micromanipulation tasks
such as single-cell holding, moving, and injecting/ejecting
materials in/out of cells is becoming an active research area.'>*'*
These types of cell manipulation tasks are important for the
characterization and manipulation of single embryo cells in
applications such as cloning, gene expression analysis, cell
replacement therapy,'” intracytoplasmic sperm injection, and
embryo pronuclei DNA injection. Much work has been done



on creating automated systems to increase the survival and suc-
cess rates of these types of procedures.!®2° There is also recent
work on integrating electroporation into a robotic manipula-
tion system for autonomous injections of single cells.*' Various
types of other platforms for laboratory automation have also
been presented. A “‘tower-based configuration” for the
automatic execution of various biotechnology (genomics and
proteomics) protocols is presented in the work by Najmabadi
etal.,”? whereas Choi et al.> present a robotic platform for clin-
ical tests suitable for small- or medium-sized laboratories using
mobile robots. A high-throughput automated genome and
chemical analysis system is shown in Meldrum et al.,”* and an
automated microscope platform for biological studies, drug
discovery, and medical diagnostics is illustrated in Potsaid
et al.” Studies to identify current and future approaches to
the design of highly automated systems for life science pro-
cesses involving humans in control loops in applications such
as high-throughput compound screening and high-
performance analytical chemistry, adherent cell culturing,
and the cultivation of primary and stem cells have been
explored in the works by Kaber et al.*® and Kuncov-Kallio
and Kallio,?” respectively. Also, previous work on image seg-
mentation techniques for biological applications is shown in
Makkapati et al.?® and Makkapati®® to properly identify the
presence of tuberculosis in biologically stained images and for
autofocusing of images of blood smears containing red blood
cells, respectively. An automated microscope system for moni-
toring the vitality of neuron cells that relies on identifying fluo-
rescent makers has been presented in Arrasate and
Finkbeiner.*° In Geisler et al.,*! an integrated system for simul-
taneous measuring of fluorescence microscopic and integrated
sensor-based data is presented as a possible enabling technol-
ogy for future screening assays. Also taking advantage of fluo-
rescent markers is the work by Neumann et al.** in which an
automated platform for high-content RNA interference
(RNAI) screening that uses time-lapse fluorescence microscopy
of live HeLa cells expressing histone—GFP to report on chro-
mosome segregation and structure is reported. An automated
platform for high-throughput cell phenotype screening com-
bining human live cell arrays, screening microscopy, and
machine-learning-based classification methods based on the
identification of the subcellular localization of marker proteins
asindicators for the cellular state is described in Conrad et al.*”

The work presented this article describes a framework for
fully automating the phototransfection process of single cells
(astrocytes and fibroblasts). Two approaches to handle the
main automation challenge of processing the cell images in
real time and off-line for morphological comparisons are
presented. A software analysis tool for automating cell
morphological measurements for quantitative comparison
of images of the cells before and after the process is
described. This is followed by a detailed description of
a proof-of-concept implementation, the framework for auto-
mating the current manual phototransfection process along
with the estimated process throughput results. Recommenda-
tions for further improvements are also provided.

FRAMEWORK FOR PROCESS AUTOMATION

A framework to automate the actual single-cell phototransfec-
tion process has been developed and is pictured schematically
in Figure 2. The first step in automating the phototransfection
process is to instrument an optical microscope with a motor-
ized stage for closed-loop positioning of the coverslips under
the microscope field of view (FOV) (Fig. 2A). Once thisis done,
a global and a local map of each coverslip can be constructed,
as seen in Figure 2B. The stage can be indexed and sequential
image captures of the FOVs in specific locations on the cover-
slip performed. A mosaic of all these images can be used to
build a global map. This map of the entire coverslip can then
be stored for comparison and analysis at different time inter-
vals. Local maps for individual FOVs of the coverslip can also
be created, where image processing will be performed. In the
individual FOVs, standard computer vision techniques, such
as edge detection, image erosion, dilation, filtering, and
filling,** can be used to segment the cell body and processes
(dendrite) area from the background in each image
(Fig. 2C). Local and global image data can then be compiled
consisting of cell body coordinate locations, sizes, contour
profile statistics, and processes (dendrite) section areas and lo-
cations. A program can be written to automatically determine
suggested laser target firing locations based on image data for
each FOV on the coverslip. These locations will be high-
curvature regions on the cell body, away from the dendrites
and cytosol of the cell, as shown in Figure 2D. Once all loca-
tions are set, coordinated stage movements followed by laser
firing (Fig. 2E), micromanipulator positioning of the
injection pipette, mRNA release (Fig. 2F), and stage reposi-
tioning can be executed across the entire global map of the
coverslip, greatly increasing throughput. Once all the FOVs
on a particular coverslip have been phototransfected, the
process will be repeated on the next coverslip in the petri dish.

The main challenge in automating the phototransfection
process is in identifying the appropriate features of the cells
in the image to direct the laser beam to create the pores in
the cell membrane where the mRNA can diffuse into it.
These features can be identified with image segmentation
techniques, and then, these segmented images can be used
to automatically determine morphological measures of the
cells (for comparison before and after the process) as well
as the laser target firing locations.

SEGMENTATION AND AUTOMATED CM MEASUREMENTS

Images of the phototransfected cell are observed and recorded
before and after the process, at different time intervals, to
assess morphological changes in the cell. Cell characterization
with morphological measures is one way that biologists can
assess the success of the overall procedure, along with other
functional tests. However, thisis not an easy task. The problem
in comparing two different images of the same cell before and
after phototransfection is that the changes in the cell are hard
to discern because of changes in illumination, camera
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Figure 2. Process flow for AutoPT. (A) Instrumented microscope with fixed-position petri dish with coverslips of cells to be phototrans-
fected. (B) Local mapping of individual coverslips for image processing and data retrieval. (C) Image segmentation to identify cell features and
morphology. Morphological data are stored in a database for each cell in the FOV. (D) Laser target calculation is based on feature extraction
and morphology. (E) Coordinated microscope stage movements and laser firing to administer laser at designated targets. (F) mRNA release
into porated cells by pipette mounted on computer-controlled micromanipulator. The process loop then restarts on next FOV on coverslip.
Once all FOVs on coverslip have been phototransfected, the process continues on next coverslip in the petri dish.

viewpoint, and background in both images. Image segmenta-
tion techniques, borrowed from the computer vision literature,
are used here to segment the image of the cell from the back-
ground to compare both images of the cell before and after
the process without ambiguities. From a properly segmented
image, the morphology is quantified by computing measures
such as cell area, perimeter, major axis length, minor axis
length, eccentricity, and equivalent diameter. This segmented
image can also allow for robust image feature identification
and laser target coordinate firing location calculations.

A schematic of some of the morphological measurements
is shown in Figure 3. The image on the left represents the
appearance of a cell before phototransfection, whereas the
image on the right represents its morphology after photo-
transfection. Ideally, it will start to resemble and function
like the donor cell, and the calculated morphology will be
used as one way to quantify this change. The area of the seg-
mented cell region of the image is defined as the actual num-
ber of pixels in the region. The perimeter metric is calculated
by determining the distance between each adjoining pair of
pixels around the border of the contiguous segmented cell re-
gion in the image. The major axis and minor axis lengths are
lengths in pixels of the major and minor axes, respectively, of
an ellipse that is fit to the segmented region that has the same
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normalized second central moments. The eccentricity mea-
sure is determined from this same ellipse and is the ratio of
the distance between the foci of the ellipse and its major axis
length. It is between 0 and 1. An ellipse with eccentricity = 0
is actually a circle, and an ellipse with eccentricity = 1 is a line
segment. The equivalent diameter measure is a scalar value
that specifies the diameter of a circle with the same area as
the segmented region. It is computed as /(4 x Area) /.
Initially, images of the cells were segmented using graph-
theoretic clustering techniques, using the image pixels as
nodes in the graph.®> Once a connected, weighted graph is
constructed from the image of interest, a graph-cutting
algorithm can be executed to segment the image. Graph-
cutting techniques tackle the minimum cut problem: finding
a cut in the graph that has the minimum cost among all
the cuts. The algorithm from Boykov and Kolmogorov,*
which is used here, solves this problem by finding the maxi-
mum flow from the “Source” nodes to the “Sink’ nodes in
the graph (Fig. 4), that is, the maximum “‘amount of water”
that can be sent from the “Source” to the “Sink™ by inter-
preting graph edges as “pipes’” with capacities equal to the
edge weights. The output of the algorithm is a label for each
node in the graph (pixel in the image) assigned to be either
the “Sink™ or the “‘Source.” For this application, the “Sink”
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Figure 3. Schematic of a cell before (left) and after (right) phototransfection and associated morphological measures quantifying cell

changes.

corresponds to pixels in the background of the image,
whereas the “Source” corresponds to pixels belonging to
the cell. Edge weights between the nodes in the graph are
computed using a weighted sum of distance (A4,), pixel inten-
sity (A4,;), and texture (A,) affinity measures for particular
nodes. The affinity values between similar nodes are large,
whereas the affinity measures connecting different nodes
are small. The distance affinity measure goes down sharply
once the distance between the pixels is more than some
threshold. The pixel intensity affinity is large for similar
intensities and smaller as the intensity difference increases.
Similarly, the texture affinities are large for pixels with simi-
lar surrounding textures and smaller as the difference
increases. These three different affinity measures between
two nodes, N1 and N2, are listed in Egs. (1)—(3), whereas
the corresponding edge weight, E, is given in Eq. (4):

Ay iz = exp{ = (Pui = Pr)’/ (207) } (M)
Ar iz =exp{ = (B = 1)/ (202) } @
A, e = exp{ = (T = T’/ (203) } (3)
Exine = widg+wrd; +wiA,, (4)

Pixels = Nodes

Figure 4. Connected graph from an image: image pixels = graph
nodes.

where Py = position of node N, Iy = pixel intensity value of
node N, Ty =average change in pixel value intensity
between pixels in a image patch surrounding node N, and
the o parameters are chosen to yield large affinity values
for similar pixels and low affinity values for dissimilar
pixels. The weights, wy, w,, and ws, are user defined, and
each is <1 and their sum = 1.

Edge weights between the nodes in the graph and the “Sink™
and “Source” nodes also need to be computed to complete the
graph. Egs. (5)—(11) are used for this. Here, A, pig, A pig, and
A, pre are distance, intensity, and texture affinities associated
with the background (“*Sink’) section of the image that are
precomputed from a set of training images.

Ay aee = Aq NiN2 ‘;Ad NI,N3 (5)
A pe = A; NN ;‘Ai NI,N3 (6)
A, ae = A NN "5 A NiN3 (7)
FNl = Ad Ave T Ai Ave T Ar Ave (8)
Fsink = Ag Bk + Ai Bke + A1 Be 9)
ENi sink = CXP{ — (Fni — Fsmk)z/(zaf)} (10)
ENI,Source =1- EN],Sink- (1 1)

The raw output from the graph-cut algorithm needs to be
filtered to come up with the final segmented image of the cell
from the background. Image erosion and dilation steps are
applied in Matlab (The MathWorks Inc., Natick, MA),
and the largest connected pixel region that is left is used as
the segmented cell image and statistics are reported on it.
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Figure 5. Images of four fibroblast cells before and after the phototransfection process, with the segmented areas from the graph-cuts
method overlaid (red) on the original images. The images in the top row are before the process, whereas those in the bottom row
are after the process has been completed. (A) Good segmentation results from the graph-cuts method. (B) Bad segmentation from the

graph-cuts method: actual cell contour shown with dashed blue line.

Figure 5A shows the result from this procedure on images of
four fibroblast cells before and after the phototransfection
process, with the segmented areas overlaid on the original im-
ages. The images in the top row are before the process,
whereas those in the bottom row are after the process has
been completed. The cell perimeter, area, major and minor
axes, and eccentricity (in pixels) are calculated for each set
of images and the corresponding changes in these morpholog-
ical measures reported in Table 1. These metrics show sub-
stantial changes after the phototransfection process has
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been performed. This indicates a successful phototransfection
because the fibroblasts now are starting to look like the do-
nor astrocyte cells, and there are metrics to support this.
However, because of the large changes in CM, inconsis-
tencies in the lighting conditions, coverslip markings, and
textures of the backgrounds and cells in the images, consis-
tent results for one set of system parameters across all data
sets are difficult to achieve. Figure 5B shows examples of
poor image segmentation, when only a subset region of the
actual cell is identified, using the same set of system



Table I. Morphological measurements from graph-cuts method with good segmentation results

Cell number Perimeter change (%) Area change (%) Major axis change (%) Minor axis change (%)

[ —5] —63
2 ~76 —87
3 +5 -9
4 —37 —44

Eccentricity change (%)

—52 —26 -33
—72 —66 —13

+9 -9 +2
—46 -2 —25

parameters as those in Figure SA. Continuous tuning of the
graph parameters can be performed to obtain acceptable re-
sults; however, it is desired to keep these details transparent
to the end user, and instructions how and what to change are
not trivial to the expected end user (biologist). Therefore,
a stand-alone, more user-friendly Matlab-based software
tool has been developed. (Note: the term ‘‘acceptable” is
used in comparison with the results obtained from manual
operation or calculation methods. Acceptable performance
is deemed within 10% of these manually obtained values.)
This software tool has been specifically designed and
implemented for assessing morphological measures in the as-
trocyte and fibroblast cells before and after the phototrans-
fection process. A screen shot of the automated
phototransfection (AutoPT) CM Graphical User Interface
(GUI) that operates the program is shown in Figure 6A. It
has been set up for individual image processing as well as
the bulk processing of many images. Once the image to be
analyzed has been loaded, the user can then choose from
a number of different processing options in the Manual Pro-
cessing Tools panel to apply to the image. These include
equalizing the image (i.e., evenly distributing intensity values
throughout the range of intensity values in the image), image
darkening/brightening, edge detection, image closing, con-
nected pixel filtering (filtering out connected pixels smaller
than specified size), and filling image holes. There is a choice
of five common edge detection methods to apply that are all
part of Matlab’s Image Processing Toolbox. The processing
can be done in any order; however, typically the order that
the tools appear in the Manual Processing Tools panel is
the order that they are executed. Figure 6B shows an original
image and subsequently processed images after application
of the manual processing tools in this order. There is also
an option to manually select pixels in the processed image
to either connect or disconnect them from the processed
image. Once the image is properly segmented, the cell statis-
tics for the largest connected pixel region are calculated and
displayed in the CM GUI. These statistics include the perim-
eter, area, major axis length, minor axis length, eccentricity,
equivalent diameter, solidity, and extent. The original image
of the cell is then overlaid with the segmented image of the
cell in both main GUI panel and in a separate window. A
new image just of the segmented cell is also generated. The
Record Statistics button can be used to write these data to
a text file and save the original cell image, segmented cell
image, and overlay image of the cell in jpg format. The data

file written also contains hyperlinks to these saved images.
Once suitable manual processing steps and parameters have
been determined for a few test images, bulk processing of
all the images in the active directory can be performed with
these settings. Inside the Automatic Processing Sequencer
panel, the process to be performed can be selected and the
corresponding sequence number entered. The processing
steps will use the parameters set in Manual Processing Tools
panel and execute the processing on all the images in the
active directory; write the corresponding statistics to a text
file; and record the original, cell, and overlay images, as
shown in Figure 7. There are also settings to record just
the largest region, three largest, or all the connected pixel
regions that are found.

Three image sets, each containing five pairs of images cor-
responding to the same cell before and after the phototrans-
fection process, were used to compare the performance of
this software tool to acquire morphological cell measure-
ments against the traditional method. In the traditional
method, the user first traces the cell border in one particular
program. This is followed by importing this new cell bound-
ary image to another program to fill in the region inside the
cell border. This filled cell image is then imported back into
the original program to measure the area of the cell. The
processing time to analyze each image set using this tech-
nique along with the percentage change in the area metric
for each image pair were recorded and are listed in Table 2
(column 3). The same image sets were analyzed manually us-
ing the AutoPT CM GUI (Fig. 6A), and the processing time
for each set along with the percentage area change for each
image pair are recorded and also shown in Table 2 (column
2). In the case of image sets 1 and 3, the processing time using
the AutoPT CM GUI tool is 33% and 38% faster than the
traditional method, respectively. The processing time for im-
age set 2 was about the same in both methods. The results for
the percentage change in the area metric with the CM GUI
program are all within 8% of the results produced with the
traditional analysis method. This error is small and can be
explained from the fact that the same person did not use both
methods (one person used traditional methods, whereas the
other used the GUI), and some portions of the cell borders
are subject to individual interpretation. It is also expected
that more time gains will be realized once the user is more
experienced with using the GUI and identifies the best
combination of processing controls to segment particular
types of images (this is the reason for similar processing times
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Figure 6. CM image processing toolbox GUI and typical segmentation processing steps. (A) CM GUI Front Panel Display. (B) Sample
output from the execution of typical processing steps in the order presented.

in image set 2). The CM GUI program is also more user-
friendly and efficient because all the necessary processing
steps are self-contained and there is no need to switch back
and forth between different programs to perform the analy-
sis. Furthermore, using the CM GUI provides more than
6x the information than the alternate approach. As stated
previously, in addition to the cell area metric, the GUI
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program yields metrics for the cell perimeter, major axis
length, minor axis length, eccentricity, equivalent diameter,
and others. These data for the three sets of test images are
shown in Table 3. For the metrics listed here, they are all sub-
stantially decreased (by an average of 58%) after the photo-
transfection process. The traditional analysis method cannot
provide these extra morphological measurements.
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CHANGES REQUIRED FOR AUTOMATION

The Bulk Process function in the AutoPT Morphology GUI
was also used to automate the processing of the three sets of
test images. Using a laptop running Windows XP, with
1.80 GHz Pentium M processor and 1 GB RAM, and
depending on the processing parameters selected, the pro-
cessing time to analyze the set ranged from 4.5 to more than
40 min. In each case, data for every connected pixel region
greater than 500 pixels were recorded, which depending on
the settings can result in a lot of extra processing time.
Because of the inconsistencies in the images (lighting condi-
tions, focal length, pipette placement, etc.), it was hard to
identify one set of image parameters to successfully segment
each cell image. This is also the case when processing the cell
images in real time during the phototransfection procedure
when trying to calculate the laser target positions on the cell.
In the best cases when using the off-line Bulk Process func-
tionality, a particular processing parameter set was able to
segment about 60% of the images in the set within an accept-
able tolerance. To process the rest of the images, another set
of parameters is selected. This is repeated until all the images
in the set have acceptable results or the remaining images can
just be processed manually. Standardized procedures to
determine the image capture settings during the process are
required to produce more consistencies among all the images
in an image set to increase the efficiency and results of both
the bulk processing and real-time processing of the images.
Also, optimized code is needed to further increase the
processing speeds. Thus, one cannot simply automate a man-
ual process without considering the impact of the manual
procedures on the automation task at hand.

PROOF-OF-CONCEPT IMPLEMENTATION FOR AUTO-PT

A proof-of-concept implementation for automating this pho-
totransfection process has been accomplished using the flex-
ible automation micro/meso-scale manipulation system from
Cappelleri®” and Cheng et al.*® The system setup can be seen
in Figure 8A. Here, an inverted optical microscope (Eclipse
TEU2000-U, Nikon Corporation, Tokyo, Japan), motorized

Cell Image Overlay Image

N -

XY stage (H107 ProScan II, Prior Scientific Inc., Rockland,
MA), and CCD camera (XC-77, Sony Corporation, Tokyo,
Japan) are the pertinent pieces of hardware being used. There
is also a four-axis computer-controlled micromanipulator
(MX7600R, Siskiyou Corporation, Grants Pass, OR) and as-
sociated controller (MC2000, Siskiyou Corporation, Grants
Pass, OR) available for use in the test bed. The computer-
controlled micromanipulator can be used to position a pipette
for dispensing mRNA. Typically, a 40x objective is used to
image the cells for this application. The phototransfection
process uses a titanium sapphire laser to perforate the cell
membranes, and the laser can be directed to any region of
the microscope FOV to administer the laser beam. There is

Table 2. Manual processing area metric and processing time
comparison

% Area % Area
Image pair change® change®
-1 0 -6
-2 —47 —47
-3 —71 —74
1—4 —90 —87
-5 —83 =75
Manual processing time (min) 16 24
2—1 -8l -8l
2-2 —9%4 -93
2-3 —95 —94
2—4 -93 -92
2-5 -89 —87
Manual processing time (min) 20 20
3—1 —65 —68
3-2 —74 =75
3-3 -89 -89
3—4 —82 —78
3-5 -8l =79
Manual processing time (min) 16 26

?Using data from AutoPT CM GUI analysis method.
®Using data from the traditional analysis method.
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Table 3. Morphological changes—% change from original

Image pair Perimeter Area Major axis
-1 21 0 6
-2 —16 —47 —24
1-3 —47 —71 —43
1—4 -8l -90 —83
-5 -77 —83 —78
2—1 —53 -8l —74
2-2 —82 —9%4 -8l
2-3 —88 —95 —88
2—4 —83 —93 —87
2-5 -79 -89 —84
3—1 -33 —65 —34
3-2 -8 —74 2
3-3 —80 -89 —83
3—4 —71 —82 —62
3-5 —61 -8l -35

Minor axis Eccentricity Equivalent diameter

3 4 0
-36 2 —27
—49 49 —46
—58 —47 —69
—52 —24 -59
-33 -7 -57
—71 -6 —76
-79 —37 —77
—60 —46 —74
—42 -76 —67
—40 5 —41
—43 18 —49
—43 —41 —67
—60 —4 —58
—71 324 —56

currently no laser in this implementation, but when incorpo-
rated into this system in the future, it will be focused to fire at
the center of the image in the FOV. The control software to
operate the system is written in Visual C#.Net, leveraging the
Windows .NET framework, enabling easy integration of
software modules that can reside on different workstations.
The software includes (1) real-time image capture of images
from the microscope; (2) control of the motorized stages;
and (3) a simple GUI (Fig. 8B) for the operator to specify
the type of cell he/she is interested in by entering relevant im-
age processing parameters. The image processing routines
are written in Matlab (version 7.2.0.232, R2006a) using func-
tions from the Image Processing Toolbox.

The Laser Target Control Panel found in the lower left
corner of the GUI (Fig. 8B) allows the user to specify the
parameters for the image processing code in Matlab. The
tunable parameters include the type of edge detection
method to use (Canny, Sobel, Roberts, Prewitt, and Lapla-
cian), the diameter for the image closing operation, and pixel
size for a connected pixel filtering procedure. Note that these
parameters are set just once. The Get Target button calcu-
lates a recommended laser target firing location of the cell
of interest in the FOV. This button saves the image from
the current image frame along with the specified parameters
and then calls Matlab to perform the necessary calculations
to segment the image of the cell from the background and
recommends image coordinates to fire the laser. In this cur-
rent implementation, this position is just determined as the
centroid of the cell body. However, more sophisticated met-
rics to calculate the laser target position can easily be applied
here instead. The laser target position information is then
sent back to the main control program and drawn on the
screen in pink. Once the laser target position has been estab-
lished, the Position Target button can be used to have the
motorized stage automatically translate the cell in the XY
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plane so that the calculated laser target position is now at
the center of the image where the laser will be parked (laser
firing location in Figure 8B). The Clear Target button is used
to reset the laser target position in the computer memory and
move the stage back to its original position. By coupling the
Get Target and the Position Target functions with the laser
firing and mRNA release from a pipette mounted on the
motorized manipulator in the system (as planned in the
future), the system will be completely automated.

ESTIMATED THROUGHPUT

On a single control computer running Windows XP, with
a 2.39 GHz Pentium 4 processor and 1 GB of RAM, it takes
30 s to segment and identify a target location for the cell and
translate the XY stage to move the cell’s laser target to the
center of the image for eventual laser firing and mRNA
release. (The laser firing and mRNA release can be done
practically simultaneously and is the easiest and fastest part
of the phototransfection process, taking about 1-2s to do
manually.) The 30-s processing time corresponds to
a throughput of about 120 cells/h, which is a 6x improve-
ment over the current manual procedure (20 cells/h). By cou-
pling all the software modules more efficiently (eliminating
the C# wrappers with Matlab software) and by processing
all cells in the FOV (typically four to six), the throughput
is expected to increase to more than 500 cells/h. This is
greater than a 25x improvement. Also, using a faster com-
puter would further decrease the cycle time. This system
can also be run continuously, only needing a human to be
there to replenish a new batch of cells and remove the
processed ones. Assuming a 12-h day at a rate of 500 cells/
h projects to a throughput of 6000 cells/12-h day.

As proof of concept for the increased time gains from
using one integrated program, the C# program functionality
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Figure 8. Proof-of-concept implementation of AutoPT platform.
(A) Hardware setup consisting of an inverted optical microscope,
CCD camera, motorized XY stage, micromanipulators, and petri
dish holding coverslips with cells for phototransfection. (B) Soft-
ware GUI for operating the AutoPT platform.

was converted to a Matlab program capable of acquiring im-
ages from the CCD camera, processing the image, calculating
laser target positions, and moving the XY stage. Running ev-
erything in the same program reduced the process time from
30s down to approximately 8s. This corresponds to
a throughput of 450 cells/h, a 23x improvement from the
current manual process. Again, assuming that all the cells
(typically four to six) in the FOV can be processed with min-
imal increased computational overhead, a potential through-
put of 2250 cells/h (>113x improvement) is estimated.
Subsequent segmentation on images with four- to six-cell en-
tities has indeed shown no marked increase in the overall
processing time. However, in practice, this fully integrated
program cannot be written in Matlab because the images
from the confocal microscope, which are used for the actual
procedure, are captured with a photomultiplier tube (PMT).
The PMT is not compatible with Matlab’s image acquisition

toolbox, which has been used here to capture images from
the CCD camera in the test setup. Therefore, custom soft-
ware is required to capture the PMT images, perform the
appropriate image segmentation, calculate laser target posi-
tions, and translate the XY stage to achieve these further
throughput gains. Another option would be to add an addi-
tional optical port to the microscope or an external optical
system that a compatible CCD camera could be mounted
and hooked into the Matlab interface. Considering of both
these options are areas of future work. To get the maximum
possible throughput out of the entire system, considerations
for automatically refilling the micropipette with mRNA
should be made along with investigations on how to move
the processed coverslip out of the way and store it in an
organized manner while feeding in the next one to be
processed, with as limited human interactions as possible.

SUMMARY

Work toward fully automating the single-cell manipulation
process of phototransfection is presented in this article. Pho-
totransfection is presently done manually in a very tedious
manner. A framework for fully automating this procedure
has been designed and proof-of-concept implementation
achieved. Computer vision techniques are used to identify
the cell of interest in the FOV and determine target locations
for the laser beam. A control program takes this information
and coordinates movements of the computer-controlled XY
stage, translating the coordinates of the laser target location
to a predefined, fixed, laser firing location. A 23x improve-
ment is possible with this implementation with room for
improvement to greater than 110x described. Images of the
phototransfected cell have been observed before and after
the process, and a software tool has been developed to assess
morphological changes in the cell as a way to characterize
them and assess the efficacy of the phototransfection process.
Image segmentation algorithms were used to segment the cell
from the background to compare both images of the cell
without ambiguities. From the properly segmented image,
the morphology is quantified by computing measures such
as cell area, asymmetry, perimeter, and eccentricity. Results
show a notable decrease in the metrics after the process has
been performed, a throughput increase over manual CM
measurements, a 6x gain in the number of measurements
made, and a more efficient and user-friendly software tool
for cell morphological analysis.
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