Micro-force Sensing Mobile Microrobots (μFSMMs)
This project is on the creation of a novel class of magnetically-controlled, mobile microrobots with two-dimensional vision-based micro-force sensing end-effectors. By combining advanced mobile manipulation microrobots with a MEMS-based micro-force sensor, a novel, transformative tool for future advancements in mechanobiology and automated biomanipulation will result. The end-effectors of the mobile microbots consist of micro-compliant mechanisms with custom-designed force-deflection characteristics whose deformations are observed with a camera attached to an optical microscope. They are fabricated along with a magnetic microrobot body and are therefore controllable with external magnetic field gradients. These micro-force sensing mobile microrobots will have real-time micro-force-control manipulation capabilities specifically tailored for mechanobiology and automated biomanipulation tasks. A portable Bio-Robotics test-bed, designed to fit comfortably around both inverted optical or confocal microscopes is also under development. A series of proof-of-concept application studies related to single cell and biomaterial adhesion and cell characterization are planned to showcase the efficacy of the system.